• Title/Summary/Keyword: 응력 확대 계수

Search Result 607, Processing Time 0.021 seconds

A Study on the High Temperature Creep Crack Growth Properties for Steam Turbine Rotor Steel under Static and Cyclic Loading Condition (화력 발전용 고압 로터강의 정하중 및 변동하중하의 고온 크립 균열전파 특성에 관한 연구)

  • O, Se-Gyu;Jeong, Sun-Eok
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.67-75
    • /
    • 1991
  • The crack length measurements by electrical potential(EP) method for 1% Cr-Mo-V and 12%Cr steel of 0.5T-CT specimen were performed at $500^{\circ}C, 600^{\circ}C 700^{\circ}C$, and an applicability of stress intensity factor($K_I$), net section stress($\sigma_{net}$), $C^*$-ingegral and $C_t$ parameter was studied to measure creep crack growth rate(da/dt) with side groove and without side groove under static and cyclic loading condition. The experimental result could be summarized as follows: 1) Crack measurement by EP method was available and coincided with the Johnson, s analytical equation. 2) da/dt by $K_I$ and $\sigma_{net}$ was not adequate because of the wide scatter band according to load and temperature, but $C^*$-integral, except for transition region, was adequate. 3) $C_t$ parameter showed the best fitted line through total creep region without relating with both temperature and load condition. 4) Under the cyclic loading condition, $C_t$ parameter was proper to extimate da/dt. And it was shown that da/dt for 1% Cr-Mo V steel under the static condition(R=1) was 1.16 times faster than the case under cyclic loading(R=0), and for 12% Cr steel, 1.43 times.

  • PDF

Loading Effect on ACPD of a Crack in Paramagnetic Material (균열을 가진 상자성체의 교류전위차에 미치는 하중의 영향)

  • Lee, Jeong-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • In order to determine the mode I stress intensity factor ($K_I$) by means of the alternating current potential drop(ACPD) technique, the change in potential drop due to load for a paramagnetic material containing a two-dimensional surface crack was examined. The cause of the change in potential drop and the effects of the magnetic flux and the demagnetization on the change in potential drop were clarified by using the measuring systems with and without removing the magnetic flux from the circumference of the specimen. The change in potential drop was linearly decreased with increasing the tensile load and was caused by the change in conductivity near the crack tip. The reason of decreasing the change in potential drop with increasing the tensile load was that the increase of the conductivity near the crack tip due to the tensile load caused the decreases of the resistance and internal inductance of the specimen The relationship between the change in potential drop and the change in $K_I$ was not affected by demagnetization and was independent of the crack length.

  • PDF

A Study on Shot peening on Fatigue Crack Growth Property for Marine Structural Steel (해양구조용강의 피로거동에 관한 연구)

  • Park, Kyoung-Dong;Ha, Kyoung-Jun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.313-318
    • /
    • 2003
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue lift: and strength. By using the methods mentioned above, I arrived at the following conclusions 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ${\Delta}K_{th}$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

  • PDF

Crack Analysis using Constrained Delaunay Triangulation Crack Mesh Generation Method (Constrained Delaunay Triangulation 균열 요소 생성 기법을 이용한 균열 해석)

  • Yeounhee Kim;Yeonhi Kim;Jungsun Park
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.17-26
    • /
    • 2024
  • Aircraft engines are exposed to high temperatures, high pressures, and stress caused by the rotation of the turbine shaft during flight. These loads can result in microcracks both on the inside and outside surfaces of the structure. Consequently, this can lead to structural defects and negatively impact the lifespan of the parts. To proactively prevent these defects, a finite element analysis is carried out to identify cracks. However, this process is time-consuming and requires significant effort due to the repetitive nature of crack modeling. This study aims to develop a crack modeling method based on the finite element model. To achieve this, the Constrained Delaunay Triangulation (CDT) technique is employed to triangulate the space while considering limitations on point connections. The effectiveness of this method is validated by comparing stress intensity factors for semi-elliptical cracks in plates and cylindrical vessels. This approach proves to be a valuable tool for crack analysis studies.

Round Robin Analysis of Pressure-Temperature Limit Curve for Reactor Vessel (원자로 용기의 압력-온도 한계곡선 Round Robin 해석)

  • 정명조;이진호;박윤원;최영환;김영진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.153-163
    • /
    • 2003
  • Performed here is a comparative assessment study for the generation of the pressure-temperature limit curve of the reactor vessel. A round robin problem is proposed using the data available in Korea and all organizations interested in the generation of the pressure-temperature limit curve are invited. The problems consisting of 12 cases for cool-down are solved and their results are compared to generate a reference solution for the reference problem, which will be useful in the evaluation of the generation of the pressure-temperature limit curve in the future.

A Gridless Finite Difference Method for Elastic Crack Analysis (탄성균열해석을 위한 그리드 없는 유한차분법)

  • Yoon, Young-Cheol;Kim, Dong-Jo;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.321-327
    • /
    • 2007
  • This study presents a new gridless finite difference method for solving elastic crack problems. The method constructs the Taylor expansion based on the MLS(Moving Least Squares) method and effectively calculates the approximation and its derivatives without differentiation process. Since no connectivity between nodes is required, the modeling of discontinuity embedded in the domain is very convenient and discontinuity effect due to crack is naturally implemented in the construction of difference equations. Direct discretization of the governing partial differential equations makes solution process faster than other numerical schemes using numerical integration. Numerical results for mode I and II crack problems demonstrates that the proposed method accurately and efficiently evaluates the stress intensity factors.

An Experimental Investigation of Limit Loads and Fatigue Properties of Spot Welded Specimens (점용접시편의 극한하중과 피로특성에 관한 실험적 고찰)

  • Lee, Hyeong-Il;Kim, Nam-Ho;Lee, Tae-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.38-51
    • /
    • 2000
  • The study on the mechanical behavior of a spot-welded specimen is largely divided into the quasi-static overload failure analysis and the fatigue failure prediction. The main issue in an overload analysis is to examine the critical loads, thereby providing a generalized overload failure criterion. As the welding spot forms a singular geometry of an external crack type, fatigue failure of spot-welded specimens can be evaluated by means of a fracture parameter. In this study, we first present the limit loads of 4 representative types of single spot-welded specimens in terms of the base metal yield strength and specimen geometries. Recasting the load vs. fatigue life relationships experimentally, obtained here, we then predict the fatigue life of spot-weld specimens with a single parameter denoted the equivalent stress intensity factor. This crack driving parameter is demonstrated to successfully describe the effects of specimen geometry and loading type in a comprehensive manner. The suggested fatigue life formula for a single spot weld can play a key, role in the design and assessment of spot-welded panel structures, in that the fatigue strength of multi-spots is eventually determined by the fatigue strength of each single spot.

The Effect of Temperature and Microstructure on High Temperature Fatigue Crack Propagation Property in Ti-3Al-2.5V Alloy (Ti-3Al-2.5V 합금의 고온피로에 미치는 온도 및 미세조직의 영향)

  • 김현철;임병수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.198-207
    • /
    • 1998
  • To determine the effect of temperature and microstructure on the fatigue crack propagation behavior in Ti-3Al-2.5V alloy, experimental investigations have been carried out with the specimens of different temperatures and different volume fractions of prime $\alpha$-phase. The temperatures employed were room temperature, 20$0^{\circ}C$, 30$0^{\circ}C$ and 40$0^{\circ}C$ under the same frequency of 20Hz. To obtain the different volume fractions of the primary $\alpha$-phase, specimens were solution-treated at $\alpha$+$\beta$ and above the $\beta$ region. From the experimental results, following conclusions were obtained. (1) ΔKth was observed to increase with the less volume fraction of the primary $\alpha$-phase. (2) As the temperature increased. (3) Microstructures having more primary $\alpha$-phase showed higher strength at the high temperatures.

  • PDF

A Study on Fatigue Crack Growth Analysis of Inclined Cracked Plate with Composite Patched Repair (경사균열을 갖는 복합재료 보강판의 피로균열 성장에 관한 연구)

  • Chung, Ki-Hyun;Yang, Won-Ho;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2091-2099
    • /
    • 2001
  • Fatigue crack growth behavior of inclined cracked Al 6061-T6 thick aluminum plate(6mm) repaired with the bonded composite patch was studied. A 0°inclined crack bonded reinforced composite patch and 15°, 30°, 45°, 60°inclined crack plates were tested. The effect of patch and inclined angle were studied and compared to each other. Also we investigated to the crack propagation direction and debonding behavior during the fatigue crack growth test. In this paper. a study was con(ducted to get an fatigue life, fatigue crack growth ratio and crack growth direction. Finally, the effectiveness of composite patch on inclined cracked plate was investigated. The results demonstrated thats there was a definite variation in fatigue life and fatigue crack growth behavior depending on the inclined crack angle.

Fabrication of unidirectional commingled-yarn-based carbon fiber/polyamide 6 composite plates and their bend fracture performances (일방향 혼합방사형 탄소섬유/폴리아미드 6 복합재료판의 제작조건과 굽힘파괴거동)

  • Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.416-427
    • /
    • 1998
  • Unidirectional commingled-yarn-based carbon fiber(CF)/polyamide(PA) 6 composite was fabricated under molding pressures of 0.4, 0.6 and 1.0 MPa to study its flexural deformation and fracture behavior. Fiber/matrix interfacial bonding area became larger with an increase of molding pressure from 0.4 to 0.6 MPa. For molding pressures .geq. 0.6 MPa, good flexural performance of similar magnitudes was attained. For the fracture test, four kinds of notch direction were adopted : edgewise notches parallel (L) and transverse (T) to the major direction of fiber bundles, and flatwise notches parallel(ZL) and perpendicular(ZT) to this direction. Nominal bend strength for L and ZL specimens exhibited high sensitivity to notching. ZL specimens revealed the lowest values of the critical stress intensity factor $K_c$ which was slightly superior to those of unfilled PA6 matrix. Enlargement of the compression area for T specimens was analyzed by means of the rigidity reduction resulting from the fracture occurrence.