• Title/Summary/Keyword: 응력이력

Search Result 247, Processing Time 0.025 seconds

Behaviour of Nak-dong River Sand on Cyclic Stress History (낙동강 모래의 반복응력이력에 의한 거동)

  • 김영수;박명렬;김병탁;이상복
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.295-302
    • /
    • 2000
  • Earthquakes not only produce additional load on the structures and underlying soil, but also change the strength characteristics of the soil. Therefore, in order to analyze soil structures for stability, the behaviour after earthquake must be considered. In this paper, a series of cyclic triaxial tests and monotonic triaxial tests were carried out to investigate the undrained shear strength and liquefaction strength characteristics of Nak-Dong River sand soils which were subjected to cyclic loading. The sample was consolidated in the first stage and then subjected to stress controlled cyclic loading with 0.1Hz. After the cyclic loading, the cyclic-induced excess pore water pressure was dissipated by opening the drainage valve and the sample was reconsolidated to the initial effective mean principal stress(p/sub c/'). After reconsolidation, the monotonic loading or cyclic loading were applied to the specimen. In the results, the undrained shear strength and liquefaction strength characteristics depended on the pore pressure ratio(Ur=U/p/sub c/'). The volume change following reconsolidation can be a function of cyclic-induced excess pore water pressure and the maximum double amplitude of axial strain.

  • PDF

A Comparison Study of Structure Behavior of Flexible Riser Using Numerical and Theoretical Methods (유연식 라이저에 대한 유한요소법과 이론적 방법에 의한 구조 거동의 비교 연구)

  • Yim, Ki-Ho;Jang, Beom-Seon;Yoo, Dong-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.258-265
    • /
    • 2016
  • A flexible riser consists of several layers which have different materials, shapes and functions. The layers designed properly can take the design load safely, and each property of layer provides a complexity of flexible riser. Such complexity/unit-property is an input for global analysis of flexible riser. There are several approaches to calculate the complexity of flexible riser, those are experimental, numerical and theoretical methods. This paper provides a complexity from numerical and theoretical analysis for 2.5 inch flexible riser of which details and the experimental data are already produced under tension, external pressure, and bending moment. In addition, comparison of stiffness and stress are also provided. Especially, analysis of stress could lead to researches on ultimate strength or fatigue strength of flexible risers.

Analysis of Durability of Vehicle Chassis Part in Virtual Test Lab (가상내구시험을 통한 차량 샤시 부품 내구성 예측에 관한 연구)

  • Cho, ByungKwan;Ha, Jungho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.747-752
    • /
    • 2013
  • Recently, virtual test laboratory techniques have been widely used to reduce vehicle development costs and time. In this study, a virtual durability test process using multibody dynamics simulation and fatigue simulation is proposed. The flexible multibody model of the front half of a car suspension is solved using road loads that are measured from durability test courses such as a Belgian road. To verify the simulation results, the measured loads of components and simulation results are collated.

Experimental Study on the Machenical Properties of Composite Beam Composed End Reinforced Concrete and Center Steel (RC-S 복합보의 역학적 특성에 관한 실험적 연구)

  • Kim, Cheol Hwan;Chae, Won Tak
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.675-682
    • /
    • 2002
  • The beam of composite structure composed of the RC structure in the end part and steel structure in the central palt were investigated during cyclic loading, in order to evaluate strength, stiffness, and deformational capacity. The parameters used in this study include the amount of reinforced steel bar between the steel beam and RC structure and the existence of the sticking plate. Test results showed that all specimens had stabilized hysteresis loops. Likewise, the specimens with sticking plate had higher load-carrying capacity compared with the one without it. In addition, the stiffness of the composite structure was higher than the steel structure. All specimens also showed good rotational capacity.

Microstructure Evolution and Its Effect on Strength during Thermo-mechanical Cycling in the Weld Coarse-grained Heat-affected Zone of Ti-Nb Added HSLA Steel (Ti-Nb첨가 저합금강 용접열영향부에서의 열-응력 이력이 미세조직 및 기계적 성질에 미치는 영향에 관한 연구)

  • Moon, Joonoh;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.44-49
    • /
    • 2013
  • The influence of thermo-mechanical cycling on the microstructure and strength in the weld coarse-grained heat affected zone (CGHAZ) of Ti-Nb added low carbon HSLA steel was explored through Vickers hardness tests, nanoindentation experiments, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Undeformed and deformed CGHAZs were simulated using Gleeble simulator with different heat inputs of 30kJ/cm and 300kJ/cm. At high heat input of 300kJ/cm, the CGHAZ consisted of ferrite and pearlite and then their grain sizes were not affected by deformation. At low heat input of 30kJ/cm, the CGHAZ consisted of lath martensite and then the sizes of prior austenite grain, packet and lath width decreased with deformation. In addition, the fraction of particle increased with deformation and this is because the precipitation kinetics was accelerated by deformation. Meanwhile, the Vickers and nanoindentation hardness of deformed CGHAZ with 30kJ/cm heat input were higher than those of undeformed CGHAZ, which are due to the effect of grain refinement and precipitation strengthening.

Evaluation of the Application and Analysis Method at Seismic Design of Dam (댐의 내진설계시 해석방법과 그 적용성 평가)

  • Hwang, Seong-Chun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4239-4249
    • /
    • 2011
  • In the country with frequent earthquakes like Japan, resistance to earthquake is assessed on the basis that Dam body's Face slab is destroyed by concentrated stress. In our country this kind of modeling and analysis is not yet definitely established. This paper performed pseudo static analysis and dynamic analysis for CFRD and evaluated reliability with the results of Shaking Table Test. The Seismic coefficient method, modified seismic coefficient method, Newmark method of Pseudo-static analysis and frequency domain response analysis, time domain history analysis of dinamic analysis were used. The analysis results were differ between analysis method, but the trends of acceleration and displacement were good agreement with the results of shaking table test.

Development of XML-based Material Database for Plant Facilities Maintenance (XML을 이용한 플랜트 재료 데이터베이스 개발 및 활용)

  • 장동식;김의현;정진성;공희경
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.1-3
    • /
    • 2004
  • 산업설비 현장에서는 설비 운영과 관련하여 재료 관련 정보에 대한 요구가 비교적 빈번하게 발생하고 있으나 필요한 기술 자료의 확보, 검토 등에 많은 어려움을 겪고 있다. 따라서 산업설비에 적용되는 재료들을 종합하여 비교, 검토할 수 있는 시스템을 개발하여 인터넷을 통해 제공할 경우 산업설비의 운영효율 향상, 신뢰도 향상에 기여할 수 있을 것으로 기대된다. 재료 데이터베이스 시스템은 재료가 사용되는 설비의 운영과 관련한 각종 데이터와 상호 연계되어야 할 필요가 있다. 손상해석, 재료선정 등은 인장시험 등 각종 시험 데이터와 더불어 재료가 사용되는 실제 설비의 응력. 온도 등 운전환경, 사용이력 등이 중요한 판단 자료가 되기 때문이다. 또한 재료 데이터는 플랜트 운영시스템, 자재구매/관리시스템 등 다양한 시스템의 기본 마스터데이터로 이용들 수 있다. 따라서 재료 데이터가 갖는 이러한 특성을 충족시키기 위해서는 확장성과 이식성이 뛰어난 XML을 기반으로 재료 데이터베이스를 개발하는 것이 바랑직할 것으로 판단된다. XML을 기반으로 개발된 재료 데이터베이스는 20,000건의 방대한 재료 규격정보를 담고 있으며 규격검색, 이름검색, 화학성분 검색, 기계적 특성 검색 등 다양한 검색 기능을 제공한다. 또한 대표적인 종합플랜트인 화력발전소의 설iii데이터와 통할 연동되어 재료의 적용현황 및 환경 등을 통합적으로 검색할 수 있다. XML을 이용한 본 개발시스템은 향후 상용 ERP 패키지 다양한 시스템의 기본 데이터베이스로 활용될 수 있을 것으로 기대된다.

  • PDF

Seismic Fragility Analysis of Curved Bridge under High Frequency Earthquakes (고주파 지진에 의한 곡선 교량의 지진 취약도 분석)

  • Jeon, Juntai;Ju, Bu-Seog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.806-812
    • /
    • 2020
  • Purpose: This is aimed to evaluate the seismic fragility of curved bridge structure with I-shape girder subjected to 12 high frequency ground motions based on Gyeongju earthquake. Method: The linear elastic finite element model of curved bridge with I-Shape cross section was constructed and them linear elastic time history analyses were performed using the 12 artificial ground motions. Result: It was found that displacement response(LS1, LS2) was failed after PGA 0.1g and the stress response also showed failure after PGA 0.2g. Conclusion: The curved bridge with I-shape girder was sensitive to high frequency earthquakes.

A Study on Safety Estimation of Railroad Wheel (컨테이너 철도차륜의 안전성 평가에 관한 연구)

  • Lee, Dong-Woo;Kim, Jin-Nam;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1178-1185
    • /
    • 2010
  • Recently, high speed of container freight cars is causing fatigue damage of wheel. Sudden failure accidents cause a lot of physical and human damages. Therefore, damage analysis for wheel prevents failure accident of container freight car. Wheel receives mechanical and thermal loads at the same time while rolling stocks are run. The mechanical loads applied to wheel are classified by the horizontal load from contact of wheel and rail in curve line section and by the vertical force from rolling stocks weight. Also, braking and deceleration of rolling stocks cause repeated thermal load by wheel tread braking. Specially, braking of rolling stocks is frictional braking method that brake shoe is contacted in wheel tread by high breaking pressure. Frictional heat energy occurs on the contact surface between wheel tread and brake shoe. This braking converts kinetic energy of rolling stocks into heat energy by friction. This raises temperature rapidly and generates thermal loads in wheel and brake shoe. There mechanical and thermal loads generate crack and residual stress in wheel. Wetenkamp estimated temperature distribution of brake shoe experimentally. Donzella proposed fatigue life using thermal stress and residual stress. However, the load applied to wheel in aforementioned most researches considered thermal load and mechanical vertical load. Exact horizontal load is not considered as the load applied to wheel. Therefore, above-mentioned loading methods could not be applied to estimate actual stress applied to wheel. Therefore, this study proposed safety estimation on wheel of freight car using heat-structural coupled analysis on the basis of loading condition and stress intensity factor.

An Estimating Method for Post-cyclic Strength and Stiffness of Eine-grained Soils in Direct Simple Shear Tests (직접단순전단시험을 이용한 동적이력 후 세립토의 강도 및 강성 예측법)

  • Song, Byung-Woong;Yasuhara, KaBuya;Murakami, Satoshi
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.15-26
    • /
    • 2004
  • Based on an estimating method for post-cyclic strength and stiffness with cyclic triaxial tests proposed by one of the authors, cyclic Direct Simple Shear (DSS) tests were carried out to confirm whether the method can be adapted to DSS test on fine-grained soils: silty clay, plastic silt, and non-plastic silt. Results from cyclic and post-cyclic DSS tests were interpreted by a modified method as adopted for cyclic and post-cyclic triaxial tests. In particular, influence of plasticity index for fine-grained soils and initial static shear stress (ISSS) was emphasised. Findings obtained from the present study are: (i) liquefaction strength ratio of fine-grained soils decreases with decreasing plasticity index and increasing ISSS; (ii) plasticity index and ISSS did not markedly influence relation between equivalent cyclic stiffness and shear strain relations; (iii) the higher the plasticity index of fine-grained soils is, the less the strength ratio decreases with increment of a normalcies excess pore water pressure (NEPWP); (iv) stiffness ratio of plastic silt has large activity decrease rapidly with increasing excess pore water pressure; and (v) post-cyclic strength and stiffness results from DSS tests agree well with those predicted by the method modified from a procedure used for triaxial test results.