• 제목/요약/키워드: 응답온열감

검색결과 9건 처리시간 0.021초

하계 인공환경실험에서의 온열쾌적특성 (Characteristics of thermal comfort for artificial environment experiment in summer)

  • 박종일;김경훈;홍희기;민병일;김창주
    • 설비공학논문집
    • /
    • 제10권3호
    • /
    • pp.368-377
    • /
    • 1998
  • The purpose of this study was to examine theory about indoor thermal comfort-environment as well as to determine thermal sensation and physiological responses for men in summer indoor environment, under various air temperature and relative humidity, with male university students. Subjective Evaluation, Heart Rate(Electrocardiogram), Electroencephalogram(EEG) were examined. We found that comfort of people was achieved at SE $T^{*}$ 24.7$^{\circ}C$, -0.82<PMV<0.93, subject's clothing(0.41c1o)and the difference of skin temperature was found at the calf area as air temperature changes. At low SE $T^{*}$, heart rate was decreased and at high SE $T^{*}$, heart rate was increased but there was no change EEG(keeping $\alpha$-wave).wave).

  • PDF

여름철 사무실내 한국인의 온열감 평가 (Evaluation of Korean Thermal Sensation in Office Buildings During the Summer Season)

  • 배귀남;이철희;이춘식
    • 설비공학논문집
    • /
    • 제7권2호
    • /
    • pp.341-352
    • /
    • 1995
  • In this study, thermal parameters were measured and 213 occupants were also questioned in three office buildings located in Seoul during the summer season. Predicted mean vote-predicted percentage of dissatisfied(PMV-PPD) and standard new effective temperature(SET*) were used for evaluating Korean thermal sensation. The distribution of thermal sensation vote(TSV) and percentage of dissatisfied(PD) is very similar to that of PMV and PPD. By regression analysis, the following regression equation was obtained; TSV=0.339SET*-8.583. In this case, neutral temperature and comfort range are $25.3^{\circ}C$, $23.8{\sim}26.8^{\circ}C$ respectively. Present experimental results obtained from the field study is less sensitive to the temperature change than those obtained from the climate chamber study in Korea. But, thermal sensations are similar to each other near the neutral point. The neutral temperature and comfort range obtained by this experiment are higher than those of ANSI/ASHRAE Standard 55-1974 about $1.4{\sim}1.8^{\circ}C$.

  • PDF

동계 인공환경실험에 의한 온열쾌적특성 연구 (A study on characteristics of thermal comfort for artificial environmental experiment in winter)

  • 박종일;김경훈;정성일
    • 설비공학논문집
    • /
    • 제10권6호
    • /
    • pp.721-731
    • /
    • 1998
  • Recently, many researchers are studying the relation between thermal environment and human comfort. The purpose of this study was to obtain basic data which are necessary to determine the thermal comfort sensation and physiological responses for men in winter indoor environment. From January to February 1998, subject experiment was 40 times proceeded under twenty different conditions of air temperature and relative humidity with early-twenty male university students. We examined subjective evaluation, Electrocardiogram(ECG), Electroencephalogram(EEG) of subjects. The results of this study can be summarized as follows : The comfort zone of people in winter was achieved at Standard new effective temperature($SET^*$) $ 25.2^{\circ}C$, PMV range was obtained by Fanger's statistical calculation was -0.27<PMV<+0.62, TSV range obtained subjects vote was -0.76<TSV<+0.36. The largest difference of skin temperature was found at the calf area as air temperature changes. vote rate of human body presented calflongrightarrowheadlongrightarrowforearmlongrightarrowchestlongrightarrowabdo men in turn. Heart rate was decreased at low $SET^*$ and heart rate was increased at high $SET^*$ But there was no change at EEG.

  • PDF

PMV 지표에 의한 개별 공조시스템(PACS)의 쾌적성 평가에 관한 연구 (Evaluation of Thermal Comfort in Task Area with Personal Air-Conditioning System(PACS) b PMV Index)

  • 최익순;정광섭;박영칠;한화택;이정재
    • 설비공학논문집
    • /
    • 제13권7호
    • /
    • pp.647-652
    • /
    • 2001
  • The thermal comfort of indoor spaces is very important factor in our life. Regions, cultures, climates and individual difference for establishing thermally comfortable environments should be considered carefully because these factors have a large influence on the thermal comfort doing some complicated interactions with environmental, psychological and physical elements. Recently, predicted mean vote(PMV) based on the heat transfer theory between environmental factors and human bodies has evaluated by many researchers and widely used nowadays. The objective of this study is to evaluate the thermal comfort in workspaces with personal air conditioning system using the measurements of environmental comfort parameters and the questionnaire survey of occupant's thermal senses with response to the environment.

  • PDF

개별공조시스템(PACA)을 적용한 작업공간에서의 온열환경 특성 및 쾌적성 평가 (Characteristics of Thermal Environment and Evaluation of Thermal Comfort in Task Area with Personal Air-Conditioning System(PACS))

  • 최익순;정광섭;박영철;한화택;이정재
    • 설비공학논문집
    • /
    • 제13권2호
    • /
    • pp.106-114
    • /
    • 2001
  • The office environment of the building has been significantly changed and the office automation(OA) for productivity improvement and efficiency has proceeded. According to thee trends, the concept of office environment was transferred from conventional \"working space\" to \"living space\" or \"creative space\". Thus, occupants in office building have demanded more comfortable and advanced task environment. The objective of this paper is to evaluate the indoor environment of working space with personal air conditioning system using the measurements of environmental comfort parameters and the questionnaire survey of occupants、 thermal sensation response to the environment.n response to the environment.

  • PDF

겨울철 사무실내 온열환경 특성 및 쾌적성 평가 (Characteristics of Thermal Environments and Evaluation of Thermal Comfort in Office Building in Winter)

  • 배귀남;이철희;이춘식;최항철
    • 설비공학논문집
    • /
    • 제7권2호
    • /
    • pp.310-318
    • /
    • 1995
  • In this study, indoor thermal parameters were measured to investigate the characteristics of thermal environments and 138 occupants were questioned to evaluate Korean thermal comfort in office building in winter. Thermal sensation was estimated by using PMV(Predicted Mean Vote) and ET*(New Effective Temperature) indices. Comparing present experimental result with international standards and that of other research, Korean thermal responses were discussed. Seasonal difference between summer and winter was also discussed. It was found that TSV(Thermal Sensation Vote) is more sensitive than PMV to the variation of temperature and that the measured percentage of dissatisfied is higher than PPD(Predicted Percentage of Dissatisfied) in real office building environments. By regression analysis, the following regression equation has been obtained; TSV=0.432ET*-8.814 and neutral temperature is $20.4^{\circ}C$ in this case. Thermal comfort range based on 80% satisfaction is also $19.4{\sim}22.4^{\circ}C$.

  • PDF

여름철 사무실내 온열환경 특성 및 쾌적성 평가 (Characteristics of Thermal Environments and Evaluation of Thermal Comfort in Office Building in Summer)

  • 이철희;배귀남;최항철;이춘식
    • 설비공학논문집
    • /
    • 제6권3호
    • /
    • pp.206-217
    • /
    • 1994
  • In this study, indoor thermal parameters were measured to investigate the characteristics of thermal environments and 212 occupants were questioned to evaluate Korean thermal comfort in office building in summer. Thermal and comfort sensations were estimated using PMV(Predicted Mean Vote) and ET* (New Effective Temperature) which are most widely used nowadays. Comparing this experimental result with international standards and that of other research, Korean thermal responses were discussed. It was found that TSV(Thermal Sensation Vote) is more sensitive than PMV to the variation of temperature and that the measured percentage of dissatisfied is higher than PPD(Predicted Percentage of Dissatisfied) in real office building environments. By regression analysis, the following regression equation has been obtained: TSV=0.461ET*-11.808 and neutral temperature is $25.6^{\circ}C$ in this case. Thermal comfort range based on 80% satisfaction is also $24.0{\sim}26.8^{\circ}C$, which is about $1^{\circ}C$ higher than that of ANSI/ASHRAE Standard.

  • PDF

생활특성과 착의량에 따른 바닥복사난방 공간의 열쾌적 범위 및 에너지 사용량에 관한 연구 (A Study on the Thermal Comfort Zone and Energy Use of Radiant Floor Heating by Residential Style and Clothing Level)

  • 김상훈;정광섭;김영일
    • 에너지공학
    • /
    • 제24권1호
    • /
    • pp.24-31
    • /
    • 2015
  • 바닥복사난방 공간에서 생활특성과 착의량에 따른 열쾌적 범위를 제시하고 각 조건별 에너지사용량 및 비용을 산출하여 비교하는 것을 목적으로 하였다. 좌식생활이 입식생활보다 낮은 온도에서 중립적 온도를 나타냈는데 바닥표면과 인체사이의 국부적인 열전달이 전신온열감에 영향을 주었기 때문으로 판단된다. 착의량이 높을수록 낮은 온도에서 중립점 온도를 나타냈는데 착의량을 증가시키면 인체에서 방출되는 열손실이 감소하여 낮은 실내온도에서 동일한 열쾌적을 느낄 수 있기 때문으로 판단된다. 좌식생활방식이 입식생활방식보다 평균 6.0%의 에너지 사용량이 절감되는 것으로 나타나 좌식생활이 경제적인 생활방식으로 분석되었다. 착의량 1.2 Clo 상태가 착의량 1.0 Clo 상태보다 평균 13.5%, 착의량 0.8 Clo상태보다 평균 18.0%의 에너지 사용량이 절감되는 것으로 나타나 동절기에 착의량을 증가시키는 생활습관의 변화만으로도 에너지 절감 효과가 큰 것으로 분석되었다.

Indoor Neutral Temperature Range using Temperature and Humidity Perception Assessment

  • Yang, Wonyoung
    • KIEAE Journal
    • /
    • 제16권5호
    • /
    • pp.29-37
    • /
    • 2016
  • Purpose: Indoor thermal comfort can be identified by combination of temperature, humidity, and air flow, etc. However, most thermal indexes in regard to thermal comfort are temperature dominant since it has been considered as a significant factor affecting to indoor thermal comfort The purposes of this study are to investigate indoor neutral temperature range of young Koreans with humidity perception, and to introduce a neutral temperature for temperature preference as well as temperature sensation in order to define the neutral temperature range chosen by occupants. It could be used as basic data for heating and cooling. Method: 26 research participants volunteered in 7 thermal conditions ($18^{\circ}C$ RH 30%, $18^{\circ}C$ RH 60%, $24^{\circ}C$ RH 30%, $24^{\circ}C$ RH 40%, $24^{\circ}C$ RH 60%, $30^{\circ}C$ RH 30%, $30^{\circ}C$ RH 60%) and completed subjective assessment in regard to temperature/humidity sensation and preference twice per condition in an indoor environmental chamber. Result: In RH 30%, sensation neutral temperature was $25.1^{\circ}C$ for men and $27.0^{\circ}C$ for women, and preference neutral temperature was $25.5^{\circ}C$ for men and $27.8^{\circ}C$ for women. In RH 60%, sensation neutral temperature was $23.6^{\circ}C$ for men and $25.9^{\circ}C$ for women, and preference neutral temperature was $23.4^{\circ}C$ for men and $26.3^{\circ}C$ for women. Neutral temperature increased with increasing relative humidity. Women were sensitive to humidity changes. Men expressed humidity changes as temperature variations. In most conditions, preference neutral temperatures were higher than sensation neutral temperatures, however, the preference neutral temperature for men in humid condition was lower than the sensation neutral temperature.