• Title/Summary/Keyword: 응고두께

Search Result 37, Processing Time 0.026 seconds

The Effect of Thickness and Solidification Rate on the Rapidly Solidified Structure of Al-Cr Alloys (급냉응고(急冷凝固)한 Al-Cr계합금(系合金)의 응고조직(凝固組織)에 미치는 응고속도(凝固速度)와 두께의 영향)

  • Cho, Soon-Hyoung;Nam, Tae-Yoon;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.5 no.2
    • /
    • pp.118-124
    • /
    • 1985
  • The thickness ranges and conditions to form the supersaturated solid solution in Al-Cr alloys were investigated with various rapid solidification conditions. Al-Cr alloys, rapidly solidified by using the small droplet chill quenching method, were examined by means of micro-vickers hardness, lattice parameter, thermal analysis and microscopic observation. The results obtained were as follows; 1. With the increase of solidification rate, the solidified structures were changed to intermetallic compound + solid solution, incompletely supersaturated solid solution, completely supersaturated solid solution, in turn. 2. The minimum solidification rate required to form completely supersaturated solid solution was $2.5{\times}10^{-2}cm/sec$, $3.6{\times}10^{-2}cm/sec$ and $6.0{\times}10^{-2}cm/sec$ for Al-1.0wt%Cr, Al-1,2wt%Cr and Al-1.5wt%Cr, respectively. 3. The maximum distance from the chill surface required to form completely supersaturated solid solution was 5mm, 1.3mm and 0.3mm for Al-1.0wt%Cr, Al-1.2wt%Cr and Al-1.5wt% Cr, respectively.

  • PDF

Estimation of Cooling Rate in Bulk Amorphous Alloys by Separate Cooling Process

  • Kang, Bok-Hyun;Choi, Seong-Pil;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.5
    • /
    • pp.167-173
    • /
    • 2010
  • 벌크 비정질 합금의 특성상 점도가 높고, 냉각속도가 빨라 냉각되는 합금의 온도를 직접 측정하는 것은 곤란하므로, 측정에 의하여 냉각속도를 구하는 것은 매우 어렵다. 본 연구에서는 합금의 온도를 직접 측정하는 대신 금형의 온도를 측정하고, 측정된 금형의 온도를 상용 열해석 프로그램을 이용한3차원 계산 결과와 비교, 보정하는 역문제 기법을 사용하여 Cu계와 Zr계 벌크 비정질합금의 냉각속도를 예측하였다. 예측된 냉각속도는 금형온도와 시편의 두께에 따라Cu계의 경우는 284~300 K/s, Zr계는 279~289 K/s로, 초기 금형온도의 영향은 크지 않은 것으로 나타났다. 전산모사 결과와 달리 금형을 수냉한 쪽보다 가열한 쪽의 응고중 냉각속도가 빨라 조직이 더 미세한 것으로 나타났는데, 이는 응고중 금형과 주물간에 에어갭의 형성으로 열전달을 방해 받은 영향으로 사료된다.

Numerical analysis of continuous casting process with electromagnetic brake (연속주조공정에서의 EMBR의 수치해석)

  • 김현경;유흥선;유수열
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.766-773
    • /
    • 1999
  • A numerical analysis has been performed solidification problem using the fixed grid-enthalpy method with enthalpy-porosity relation. A modified standard $k-\varepsilon$ model was applied to describe the influence of turbulent flow. Computational procedures are based on the finite volume method and the non-staggered grid system. Comparisons with the different three experimental results show that applying a modified standard $k-\varepsilon$model in mushyzone is better than the previous computation results. This paper includes another EMBR's influences such as change of velocity field, Increasement of temperature and dispersion of flow out of nozzle into the flow field. These EMBR's influences are compared to case without EMBR.

  • PDF

Barrier Techniques for Spinal Cord Protection from Thermal Injury in Polymethylmethacrylate Reconstruction of Vertebral Body : Experimental and Theoretical Analyses (Polymethylmethacrylate를 이용한 척추체 재건술에서 척수의 열 손상을 방지하기 위한 방어벽 기법 : 실험적 및 이론적 분석)

  • Park, Choon Keun;Ji, Chul;Hwang, Jang Hoe;Kwun, Sung Oh;Sung, Jae Hoon;Choi, Seung Jin;Lee, Sang Won;Park, Sung Chan;Cho, Kyeung Suok;Park, Chun Kun;Yuan, Hansen;Kang, Joon Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.3
    • /
    • pp.272-277
    • /
    • 2001
  • Objective : Polymethylmethacrylate(PMMA) is often used to reconstruct the spine after total corpectomy, but the exothermic curing of liquid PMMA poses a risk of thermal injury to the spinal cord. The purposes of this study are to analyze the heat blocking effect of pre-polymerized PMMA sheet in the corpectomy model and to establish the minimal thickness of PMMA sheet to protect the spinal cord from the thermal injury during PMMA cementation of vertebral body. Materials & Methods : An experimental fixture was fabricated with dimensions similar to those of a T12 corpectomy defect. Sixty milliliters of liquid PMMA were poured into the fixture, and temperature recordings were obtained at the center of the curing PMMA mass and on the undersurface(representing the spinal cord surface) of a prepolymerized PMMA sheet of variable thickness(group 1 : 0mm, group 2 : 5mm, or group 3 : 8mm). Six replicates were tested for each barrier thickness group. Results : Consistent temperatures($106.8{\pm}3.9^{\circ}C$) at center of the curing PMMA mass in eighteen experiments confirmed the reproducibility of the experimental fixture. Peak temperatures on the spinal cord surface were $47.3^{\circ}C$ in group 2, and $43.3^{\circ}C$ in group 3, compared with $60.0^{\circ}C$ in group 1(p<0.00005). So pre-polymerized PMMA provided statistically significant protection from heat transfer. The difference of peak temperature between theoretical and experimental value was less than 1%, while the predicted time was within 35% of experimental values. The data from the theoretical model indicate that a 10mm barrier of PMMA should protect the spinal cord from temperatures greater than $39^{\circ}C$(the threshold for thermal injury in the spinal cord). Conclusion : These results suggest that pre-polymerized PMMA sheet of 10mm thickness may protect the spinal cord from the thermal injury during PMMA reconstruction of vertebral body.

  • PDF

Behavior of Slip Force in Continuous Flate Casting (평판 강혼 주조용 연주기의 Slip Force 거동에 대하여)

  • Si Young Kim
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.85-91
    • /
    • 1981
  • An equation was derived which describes the slip force that occurs at the casting of initial state due to unequilibrium with support bar weight, liquid metal, casting velocity, thickness, control roller, hydraulic motor and etc. The slip force equations are solved on the basis of velocity, gravity and thickness in casting ingot. In this paper the auther assumed that the other mechanisms are normal. The behaviour of slip force in many characteristics is calculated as a function of velocity, gravity and thickness with variation. The conclusion with this phenomena is reached that the present theory realistically predicts the growth of slip force in a flat plate ingot continuous casting machine.

  • PDF

Heat Conduction of the Solidification Process in a Cylinder with Finite Thichness (유한두께를 가지는 원형관내의 응고과정의 열전도)

  • ;;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.1 no.4
    • /
    • pp.196-202
    • /
    • 1977
  • The solidification process in a cylinder with finite thickness in studied by explicit finite difference method. The temperature distribution, the solidification front profile and the dischrged latent heat for the process are obtained. It is found that the solidification front profile is almost linear except in the vicinity of the initation of phase change. This result motivates us to use linear relations between the position of solidification and time for approximate calculations.

A Deformation Behavior Analysis of Dynamic Bulging in the Mini-Mill Continuous Casting System (Mini-Mill 연속주고기의 동적 Bulging해석 Model(I) -주편의 변형거동을 중심으로-)

  • 한성욱;정영진;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.138-143
    • /
    • 1998
  • The continuous casting process has been adopted increasingly in recent years to save both energy and labor. It has experienced a rapid development in the production of semi-finished steel products, replacing the conventional route of ingot casting plus rolling. To achieve this good merit, however, more studies about a heat transfer mechanism between roll and slab are needed. So this paper shows the results of the deformation behavior of steel cast slabs, which are about the solidification and heat transfer. This study is used to prevent internal cracks of a slab in a bending and unbending zone. The value of moving strand shell bulging between two supporting rollers under ferrostatic pressure and slab-self weight has been computed in terms of creep and elastic-plasticity. The high strand distributions in solidified shell undergoes a series of bulging are calculated with boundary condition a very closed to continuous steel cast slabs productions.

  • PDF

Fabrication of Metal Discs Using Molten Tin and Brass Droplets (주석과 황동 용탕 드롭렛을 이용한 디스크형 응고체 제조)

  • Song, Jeongho;Lee, Tae-Kyeong;Rhee, Gwang-Hoon;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.714-721
    • /
    • 2016
  • This paper proposes a simple process to fabricate tin and brass metal discs with a large surface area from molten droplets for the wet-refining process of nonferrous metals by assuming they have precious metal elements. To optimize the droplet condition in a graphite crucible, the appropriate nozzle size was determined using a simulation program (STAR-CCM+) by varying the diameters (0.5, 1.0, and 2.0 mm). The simulation results showed that both tin and brass do not fall out with a 0.5 mm diameter nozzle but they do fall out in continuous ribbon mode with a 2.0 mm nozzle. Only the 1.0mm nozzle was expected to fabricate droplets. Finally, solidified metal discs were fabricated successfully with the 1.0 mm nozzle within 10 minutes by impacting the droplets with a cooling water flowing over a Ti plate placed at the $40^{\circ}$ falling direction. The weight, average thickness, and surface area of the tin discs were 0.15 g, $107.8{\mu}m$, and $3.71cm^2$, respectively. The brass discs were 1.16 g, $129.15{\mu}m$, and $23.98cm^2$, respectively. The surface area of the tin and brass disc were 8.2 and 17.6 times the size of the tin and brass droplets, respectively. This process for precious metal extraction is expected to save cost and time.

Numerical analysis of the continuous casting process in the presence of thermo-solutal convection (열농도대류를 고려한 연속주조공정의 수치해석)

  • Jeong, Jae-Dong;Yu, Ho-Seon;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.445-456
    • /
    • 1997
  • Continuous casting process is numerically analyzed using the continuum model in a non-orthogonal coordinate system. Flow damping in the mush is modeled by combining the viscosity dependence on liquid fraction in dilute mush and the permeability dependence on liquid fraction in concentrated mush. The effect of turbulence is indirectly considered by effective diffusivity determined elsewhere by experiment. The main objective is to investigate the effects of casting parameters such as casting speed and tundish superheat on the distribution of surface temperature, shell thickness, metallurgical length and centerline segregation. Some of the computed results are compared with available experiments, and reasonable agreements are obtained.

Prediction of Curl Distortion using Classical Lamination Theory in Stereolithography (SL 광조형 공정에서 고전적층이론을 적용한 곡률 변형 예측)

  • Kim, Gi-Dae;Lee, Jae-Kon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.210-217
    • /
    • 2005
  • A curl distortion induced by shrinkage during stereolithography polymerization process is analyzed with the classical lamination theory. Test parts of different layer thickness and part thickness are manufactured and their deformations are measured with CMM. Curl distortion is generated by the differential shrinkage of the layers, where the total shrinkage includes the shrinkages due to solidification and the change of temperature. It is shown that the curl distortion increases exponentially with decreasing the total thickness of the part, whose smaller layer thickness induces larger curl distortion. It is verified that only a part of the total shrinkage plays a role in generating the curl distortion.