• Title/Summary/Keyword: 음향 해석

Search Result 1,192, Processing Time 0.021 seconds

Finite element analysis for acoustic and temperature characteristics of a piezoelectric HIFU transducer at 10 MHz (10 MHz용 압전 HIFU 트랜스듀서의 음향 및 온도 특성에 대한 유한요소해석)

  • Jong-Ho Kim;Il-Gok Hong;Ho-Yong Shin;Hyo-Jun Ahn;Jong-In Im
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.3
    • /
    • pp.116-123
    • /
    • 2023
  • A high intensity focuses ultrasound (HIFU) is one of the emerging technologies in the biomedical field. The piezoelectric HIFU transducer is a device that utilizes the thermal energy generated by high ultrasound energy. Recently an operating frequency of the HIFU transducer is to expand above a 7 MHz. In this study, the acoustic pressures and temperature distributions in the tissue that generated by the HIFU transducer at 10 MHz were calculated with the finite element method. In addition, the pressure focusing characteristics of the device were analyzed. The geometrical variables are the piezomaterial thickness, lens shape, water height, and film thickness. The results shown that the acoustic pressure increased and saturated gradually when the height/radius (HL/RL) ratio of the lens increased. Moreover, the focal area was gradually decreases with HL/RL ratio of the lens. In case of the optimized HIFU transducer, the maximum pressure and temperature were analyzed about 19 MPa and 65℃ respectively. And the -3 dB focused distances in the axial and lateral direction are around 2.3 mm and 0.23 mm respectively.

Estimation of the Freshwater Advection Speed by Improvement of ADCP Post-Processing Method Near the Surface at the Yeongsan Estuary (ADCP 표층유속 자료처리방법 개선을 통한 영산강 하구 표층 방류수 이류속도 산정)

  • Shin, Hyun-Jung;Kang, Kiryong;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.3
    • /
    • pp.180-190
    • /
    • 2014
  • It has been customary to exclude top 10-20% of velocity profiles in the Acoustic Doppler Current Profiler (ADCP) measurement due to side lobe effects at the boundary. To better understand the mixing in the Yeongsan estuary, the freshwater advection speed (FAS) was recovered from highly contaminated ADCP data near the surface. The velocity profiles were measured by using ADCP at two stations in the Yeongsan estuary during August 2011: one was located in front of the Yeongsan estuarine dam and the other was deployed near Goha Island. The FAS was recovered from the ADCP data set by applying rigorous post-processing methods and compared with the sediment advection speed (SAS). The SAS was determined by the peak time difference of suspended sediment concentration between two stations in the channel, divided by the distance of two stations. The FAS and the SAS showed very similar value when the freshwater discharge was greater than $2.0{\times}10^7$ ton and the SAS was a bit greater when the freshwater discharge was smaller. Since the FAS was on average about 0.8 m/s greater than the velocity at 0.8 of water depth from the bottom, the net discharge, estimated with recovered FAS and integrated over water depth and tidal cycle, was directed seaward during the high discharge contrary to the onshore direction of the net discharge estimated with 0.8 of water depth from the bottom. Moreover, the velocity shear and Richardson number changed when the FAS was used. Thus, the importance of the true FAS is appreciated in the investigation of the surface layer stability. If currents, temperature and salinity were observed for longer time in the future, it could be possible to more accurately understand the formation and decay of stratification as well as the suspended sediment transport processes.