• 제목/요약/키워드: 음향 파워 평형

검색결과 3건 처리시간 0.019초

음향파워 평형방법을 이용한 HVAC 시스템 소음예측 (Prediction of HVAC System Noise by Acoustic Power Balancing Method)

  • 홍진무;최태묵;김병희;조대승;김동해
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1306-1312
    • /
    • 2001
  • In this study. the acoustic power balancing method to analysis HVAC system noise is presented. The method can consider not only forward but also backward propagations of noise generated by the operation of air supply units and aerodynamical disturbance at duct elements. This can be done by estimating sound transmission and reflection properties of duct elements. and balancing acoustic powers of total HVAC system. To verify the accuracy of the presented method. numerical analysis for a HVAC system is carried out and the results are compared with those obtained by a traditional empirical method. suggested by National Environmental Balancing Bureau.

  • PDF

대형 컨테이너운반선의 공조 소음 해석사례 (Noise Analysis of Large Container Carrier Vessel on HVAC Noise)

  • 김문수;조대승;김병희;권종현
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2006년도 특별논문집
    • /
    • pp.65-70
    • /
    • 2006
  • In this paper, we introduce prediction program of HVAC system, HJNOVAC Version 2.0. The developed program adopts both the authentic empirical method suggested by NEBB and acoustic power balancing method. The program provides intuitive pre- and post- processor using modern GUI function to help efficient modeling and evaluation of cabin and HVAC component noises. To verify the accuracy and convenience of the program, we carry out noise prediction of HVAC system for 8,100 TEU Container Carrier and measure the noise levels of cabins during sea trial.

  • PDF

공조시스템 유기 격실 소음 예측 프로그램 개발 (Development of Cabin Noise Prediction Program Induced by HVAC System)

  • 김병희;권종현;조대승
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.554-558
    • /
    • 2004
  • In this paper, we introduce noise prediction program of HVAC system to assist low-noisy design of ship's cabin. The developed program calculates sound power levels at HVAC components considering primary and secondary noise generated by fan and duct element, duct element noise attenuation, and duct break-in noise based on the authentic empirical method suggested by NEBB and acoustic power balancing method. Sound pressure level at cabin with or without ceiling system is evaluated by the diffuse-field theory considering diffuser and duct break-out sound powers. Moreover, the program provides intuitive pre- and post-processors using modem GUI functions to help efficient modeling and evaluation of cabin and HVAC component noise. To validate the accuracy and convenience of the program, noise prediction for a HVAC system is demonstrated.

  • PDF