• Title/Summary/Keyword: 음향학적 반향 억제

Search Result 4, Processing Time 0.018 seconds

A New Unified System of Acoustic Echo and Noise Suppression Incorporating a Novel Noise Power Estimation (새로운 잡음전력 추정 기법을 적용한 음향학적 반향 및 배경잡음 제거 통합시스템)

  • Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.7
    • /
    • pp.680-685
    • /
    • 2009
  • In this paper, we propose a efficient noise power estimation technique for an integrated acoustic echo and noise suppression system in a frequency domain. The proposed method uses speech absence probability (SAP) derived from the microphone input signal as the smoothing parameter updating noise power to reduce the noise power estimation error resulted from the distortions in the unified structure where the noise suppression (NS) operation is placed after the acoustic echo suppression (AES) algorithm. Therefore, in the proposed approach, the smoothing parameter based on SAP derived from the input signal instead of echo-suppressed signal should stop updating noise power estimates during the distorted noise spectrum periods. The performance of the proposed algorithm is evaluated by the objective test under various environments and yields better results compared with the conventional scheme.

Residual Echo Suppression Based on Tracking Echo-Presence Uncertainty (Tracking Echo-Presence Uncertainty 기반의 잔여 반향 억제)

  • Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10C
    • /
    • pp.955-960
    • /
    • 2009
  • In this paper, we propose a novel approach to residual echo suppression (RES) algorithm based on tracking echo-presence uncertainty (TEPU) to improve the performance of acoustic echo suppression (AES) in the frequency domain. In the proposed method, the ratio of the microphone input and the echo-suppressed output signal power is employed as the threshold value for the decision rule to estimate the echo-presence uncertainty applied to the RES filter. The proposed RES scheme estimates the echo presence uncertainty in each frequency bin and effectively reduces residual echo signal in a simple fashion. The performance of the proposed algorithm is evaluated by the objective test and yields better results compared with the conventional schemes.

Frequency Domain Double-Talk Detector Based on Gaussian Mixture Model (주파수 영역에서의 Gaussian Mixture Model 기반의 동시통화 검출 연구)

  • Lee, Kyu-Ho;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.401-407
    • /
    • 2009
  • In this paper, we propose a novel method for the cross-correlation based double-talk detection (DTD), which employing the Gaussian Mixture Model (GMM) in the frequency domain. The proposed algorithm transforms the cross correlation coefficient used in the time domain into 16 channels in the frequency domain using the discrete fourier transform (DFT). The channels are then selected into seven feature vectors for GMM and we identify three different regions such as far-end, double-talk and near-end speech using the likelihood comparison based on those feature vectors. The presented DTD algorithm detects efficiently the double-talk regions without Voice Activity Detector which has been used in conventional cross correlation based double-talk detection. The performance of the proposed algorithm is evaluated under various conditions and yields better results compared with the conventional schemes. especially, show the robustness against detection errors resulting from the background noises or echo path change which one of the key issues in practical DTD.

Voice Activity Detection Using Global Speech Absence Probability Based on Teager Energy in Noisy Environments (잡음환경에서 Teager Energy 기반의 전역 음성부재확률을 이용하는 음성검출)

  • Park, Yun-Sik;Lee, Sang-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.97-103
    • /
    • 2012
  • In this paper, we propose a novel voice activity detection (VAD) algorithm to effectively distinguish speech from nonspeech in various noisy environments. Global speech absence probability (GSAP) derived from likelihood ratio (LR) based on the statistical model is widely used as the feature parameter for VAD. However, the feature parameter based on conventional GSAP is not sufficient to distinguish speech from noise at low SNRs (signal-to-noise ratios). The presented VAD algorithm utilizes GSAP based on Teager energy (TE) as the feature parameter to provide the improved performance of decision for speech segments in noisy environment. Performances of the proposed VAD algorithm are evaluated by objective test under various environments and better results compared with the conventional methods are obtained.