• Title/Summary/Keyword: 음향층심도

Search Result 2, Processing Time 0.015 seconds

Analysis of Differences between the Sonic Layer Depth and the Mixed Layer Depth in the East Sea (동해의 음향층심도와 혼합층깊이 차이 분석)

  • Lim, Sehan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1259-1268
    • /
    • 2015
  • The sonic layer depth (SLD) variability is important for understanding the acoustic properties of the upper ocean that influence acoustic communications, acoustic tomography, and naval operations related to searching and detecting marine underwater vessels. Generally, the SLD is the acoustical equivalent of the mixed layer depth (MLD), although they are defined differently. In this study the SLD was compared with the MLD over the annual cycle in the East Sea using an available set of temperature-salinity observation profiles. For the comparison, various definitions and methods of the MLD had applied. As a result, the SLD in the East Sea is slight similar to the curvature method applied MLD, but the other MLD have severe differences with the SLD. Futhermore, a parabolic equation transmission model is used to evaluate the cutoff frequency trapped in surface duct. It follow that there is an optimum frequency for propagation at which the loss of sound is minimum.

Variability of Underwater Sound Propagation in the Northern Part of the East Sea (동해 북부해역의 수중음파전달 변동성)

  • Lim, Se-Han;Yun, Jae-Yul;Kim, Yun-Bae;Nam, Sung-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.52-61
    • /
    • 2007
  • Temporal and spatial variations of sea water largely affect on the pattern of underwater sound propagation. Acoustic environmental changes and their effects on underwater sound propagation in the northern part of the East Sea, which have been poorly studied mainly due to lack of observations, are investigated by analyzing the hydrographic data acquired since 1993. Severe changes in acoustic environments are associated with various physical processes such as deep convection, thermal fronts, and eddies in the northern part of the East Sea. Spatio-temporal variations of sound speed field and the layer of the maximum sound speed are categorized into six typical cases. Using a sound source of 5 kHz, acoustic transmission losses are calculated range-independently for the six typical cases. Significant differences among the patterns of transmission loss in the six cases suggest that a different tactics are required when we operate in the northern part of the East Sea.