• Title/Summary/Keyword: 음향인자

Search Result 230, Processing Time 0.02 seconds

Frequency Dependence of High-frequency Bottom Reflection Loss Measurements (고주파 해저면 반사손실의 주파수 종속성 측정)

  • 박순식;윤관섭;최지웅;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.652-659
    • /
    • 2003
  • High-frequency(40∼120 kHz) reflection loss measurements on the water-sandy sediment with a flat interface were conducted in a water tank for various grazing angles. The water tank(5×5×5 m) was filled with a 0.5 m-thick-flat bottom of 0.5ø-mean-grain-size sand. Reflection losses, which were experimentally obtained as a function of grazing angle and frequency, were compared with the forward loss model, APL-UW model (Mourad & Jackson, 1989). For frequencies below 60 kHz, the observed losses well agree with the reflection loss model, however, in cases for frequencies above 70 kHz, the observed losses are greater by 2∼3 dB than the model results. The model calculation, which does not fully account for the vertical scale of roughness due to grain size, produce less bottom losses compared to the observations that correspond to large roughness based on the Rayleigh parameter in the wave scattering theory. In conclusion, for the same grain-size-sediment, as frequencies increase, the grainsize becomes the scale of roughness that could be very large for the frequencies above 70 kHz. Therefore, although the sea bottom was flat, we have to consider the frequency dependence of an effect of roughness within confidential interval of grain size distribution in reflection loss model.

A Simulation Study of Artificial Cochlea Based on Artificial Basilar Membrane for Improving the Performance of Frequency Separation (인공기저막 기반 인공와우의 주파수 분리 성능향상을 위한 인공기저막 전산모사)

  • Kim, Tae-In;Chang, Seong-Min;Song, Won-Joon;Bae, Sung-Jae;Kim, Wan-Doo;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.457-463
    • /
    • 2012
  • The basilar membrane (BM), one of organs of cochlea, has the specific positions of the maximum amplitude at each of related frequencies. This phenomenon is due to the geometry of BM. In this study, as the part of the research for the development of fully implantable artificial cochlea which is based on polymer membrane, parametric studies are performed to suggest the desirable artificial basilar membrane model which can detect wider range of frequency separation. The vibro-acoustic characteristics of the artificial basilar membrane are predicted through finite element analysis using commercial software Abaqus. Simulation results are verified by comparing with experimental results. Various geometric shapes of the BM and residual stress effects on the BM are investigated through the parametric study to enable a wider detectable frequency separation range.

A Study on Robust Matched Field Processing Based on Feature Extraction (특성치 추출 기법에 의한 강인한 정합장 처리에 관한 연구)

  • 황성진;성우제;박정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.83-88
    • /
    • 2001
  • In this paper, matched field processing algorithm robust to environmental mismatches in an ocean waveguide based on feature extraction is summarized. However, in applying this processor to localize a source there are two preliminary issues to be resolved. One is the number of eigenvectors to be extracted and the other is the number of environmental samples to be used. To determine these issues, the relation between the number of dominant modes propagating in a given ocean waveguide and that of eigenvectors to be extracted is analyzed. Then, the analysis results are confirmed by the subspace analysis. This analysis quantifies the similarity between the subspace spanned by the signal vectors and that spanned by the eigenvectors to be extracted. The error index is defined as a relative difference between the location estimated by the current processor and the real source location. It is identified that in the case of extracting the largest eigenvectors equal to the number of dominant modes in a given environment, the processor localizes the source successfully. From the numerical simulations, it is shown that use of at least 30 environmental samples guarantee stable performance of the proposed processor.

  • PDF

A Study on Estimation of the Sound Speed of Seabed from the Frequency-dependent Interference Pattern of Broadband Signal (광대역 신호의 주파수 영역 간섭 패턴을 이용한 해저면 음속 추정 연구)

  • 이성욱;한주영;김남수;나정열;박정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.554-561
    • /
    • 2003
  • Results of the numerical simulation and experimental data analysis for identification of mode cutoff frequency and estimation of sound speed of seabed from the spectrum of acoustic signal received at fixed source-receiver range are presented. Model simulations for Pekeris waveguide show that the frequency-dependent propagation loss and interference pattern are closely related to mode cutoff frequencies and it could be possible to the identify them from the changes of interference pattern. The concept considered at numerical simulations is applied to signals acquired at sea test. Cutoff frequency and sound speed of seabed are estimated from the interference pattern of measured signal. Propagation loss predicted using the estimated sound speed of seabed as model input parameter shows similar estimation result compared to propagation loss derived from measured data.

Feature Compensation Method Based on Parallel Combined Mixture Model (병렬 결합된 혼합 모델 기반의 특징 보상 기술)

  • 김우일;이흥규;권오일;고한석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.603-611
    • /
    • 2003
  • This paper proposes an effective feature compensation scheme based on speech model for achieving robust speech recognition. Conventional model-based method requires off-line training with noisy speech database and is not suitable for online adaptation. In the proposed scheme, we can relax the off-line training with noisy speech database by employing the parallel model combination technique for estimation of correction factors. Applying the model combination process over to the mixture model alone as opposed to entire HMM makes the online model combination possible. Exploiting the availability of noise model from off-line sources, we accomplish the online adaptation via MAP (Maximum A Posteriori) estimation. In addition, the online channel estimation procedure is induced within the proposed framework. For more efficient implementation, we propose a selective model combination which leads to reduction or the computational complexities. The representative experimental results indicate that the suggested algorithm is effective in realizing robust speech recognition under the combined adverse conditions of additive background noise and channel distortion.

A Study on the Automatic Detection and Extraction of Narrowband Multiple Frequency Lines (협대역 다중 주파수선의 자동 탐지 및 추출 기법 연구)

  • 이성은;황수복
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.78-83
    • /
    • 2000
  • Passive sonar system is designed to classify the underwater targets by analyzing and comparing the various acoustic characteristics such as signal strength, bandwidth, number of tonals and relationship of tonals from the extracted tonals and frequency lines. First of all the precise detection and extraction of signal frequency lines is of particular importance for enhancing the reliability of target classification. But, the narrowband frequency lines which are the line formed in spectrogram by a tonal of constant frequency in each frame can be detected weakly or discontinuously because of the variation of signal strength and transmission loss in the sea. Also, it is very difficult to detect and extract precisely the signal frequency lines by the complexity of impulsive ambient noise and signal components. In this paper, the automatic detection and extraction method that can detect and extract the signal components of frequency tines precisely are proposed. The proposed method can be applied under the bad conditions with weak signal strength and high ambient noise. It is confirmed by the simulation using real underwater target data.

  • PDF

Development of a Dual Axial Gyroscope with Piezoelectric Ceramics (압전세라믹을 이용한 2축형 회전센서 개발)

  • Ryoo, Hye-Ok;Lee, Young-Jin;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.61-67
    • /
    • 1997
  • Piezoelectric gyroscopes are the devices to measure angular rotational velocity of a system with respect to an inertial frame of reference means of the Coriolis principle. Most of current piezoelectric gyroscopes detect rotational velocity about a single axis of rotation. This paper describes development of a new dual axial gyroscope made out of the piezoelectric ceramic, PZT, which can overcome the limitation of the current single axial type. The validity of the new structure is checked through finite element analysis. Based on the design, an experimental sample of the sensor is fabricated and its performance is discussed in comparison with the theoretical expectation. The resutls show that the present gyroscope is capable of measuring the rotational velocity over two orthogonal axes simultaneously with good enough sensitivity and distinction between the two axial components of the rotation.

  • PDF

Calculation Model of Time Varying Loudness by Using the Critical-banded Filters (임계 대역 필터를 이용한 과도음의 라우드니스 계산 모델)

  • Jeong, Hyuk;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.65-70
    • /
    • 2000
  • It is blown that the loudness is one of the most important metrics in assessing the sound quality and a calculation method for loudness has been standardized for steady sounds. In this study, a new loudness model is suggested for dealing with the transient sound for a unified analysis of various practical sounds. A signal processing technique is introduced for this purpose, which is required for the band subdivision and the prediction of band-level change of transient sounds. In addition, models for the post-masking and the temporal integration are adopted in the analysis of the loudness of transient sounds. In order to solve the problem of the conventional loudness model in the pure-tone signal processing, a critical band filter is employed in the analysis, which consists of 47 critical filters having a filter spacing of a half of the critical bandwidth. For testing the effectiveness of the present model, the predicted responses are compared with the experimental data and it is observed that they are in good agreements.

  • PDF

Study on the Rolling Noise Model Using an Analysis of Wheel and Rail Vibration Characteristics (철도 차륜 및 레일 진동 특성 해석을 통한 전동 소음 모델 연구)

  • Jang, Seungho;Ryue, Jungsoo
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.175-182
    • /
    • 2013
  • Rolling noise is an important source of noise from railways; it is caused by wheel and rail vibrations induced by acoustic roughness at the wheel/rail contact. To reduce rolling noise, it is necessary to have a reliable prediction model that can be used to investigate the effects of various parameters related to the rolling noise. This paper deals with modeling rolling noise from wheel and rail vibrations. In this study, the track is modeled as a discretely supported beam by regarding concrete slab tracks, and the wheel vibration is simulated by using the finite element method. The vertical and lateral wheel/rail contact forces are modeled using the linearized Hertzian contact theory, and then the vibration responses of the wheel and rail are calculated to predict the radiated noise. To validate the proposed model, a field measurement was carried out for a test vehicle. It was found that the predicted result agrees well with the measured one, showing similar behavior in the frequency range between 200 and 4000 Hz where the rolling noise is prominent.

A study on the estimation of bubble noise generated by orifice type bubble generators (오리피스형 공기분사기 생성 기포소음 추정 연구)

  • Park, Cheolsoo;Jeong, So Won;Kim, Gun Do;Moon, Ilsung;Kim, In kang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.255-267
    • /
    • 2022
  • In this paper, noise characteristics of bubbles created by an orifice-type bubble generator are studied. In order to understand the overall bubble noise characteristics, the bubble noise spectra proposed by Strasberg and Blake, respectively, are examined, and an air injection experiment was performed in the large cavitation tunnel of KRISO to measure the bubble noise. The experiments were performed under a quiescent condition and flow conditions using 5 types of air bubble generator. From the measurement results, the characteristics of the bubble noise spectrum according to the experimental conditions are observed, and the effect of each parameter on bubble noise is analyzed by regression analysis. Finally, empirical models based on the regression analysis for bubble noise are presented, and it is confirmed that the estimated bubble noise is in good agreement with the measured results.