• Title/Summary/Keyword: 음향공진

Search Result 296, Processing Time 0.019 seconds

Nondestructive Interfacial Evaluation and fiber fracture Source Location of Single-Fiber/Epoxy Composite using Micromechanical Technique and Acoustic Emission (음향방출과 미세역학적시험법을 이용한 단일섬유강화 에폭시 복합재료의 비파지적 섬유파단 위치표정 및 계면물성 평가)

  • Park, Joung-Man;Kong, Jin-Woo;Kim, Dae-Sik;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.418-428
    • /
    • 2003
  • Fiber fracture is one of the dominant failure phenomena affecting the total mechanical Performance of the composites. Fiber fracture locations were measured through the conventional optical microscope and the nondestructive acoustic emission (AE) technique and then were compared together as a function of the epoxy matrix modulus and the fiber surface treatment by the electrodeposition method (ED). Interfacial shear strength (IFSS) was measured using tensile fragmentation test in combination of AE method. ED treatment of the fiber surface enlarged the number of fiber fracture locations in comparison to the untreated case. The number of fiber fracture events measured by the AE method was less than optically obtained one. However, fiber fracture locations determined by AE detection corresponded with those by optical observation with small errors. The source location of fiber breaks by AE analysis could be a nondestructive, valuable method to measure interfacial shear strength (IFSS) of matrix in non-, semi- and/or transparent polymer composites.

Performance Evaluation of Seawater-Exchanging Breakwater Using Helmholtz Resonator (헤름홀츠 공명장치를 이용한 해수교환형 방파제의 성능평가)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.89-99
    • /
    • 2001
  • In the present paper, Helmholtz resonator, which is widely used as a sound-amplification device, is applied to the development of seawater-exchanging breakwater. The incident waves can induce a large response in the resonator when incident wave frequency is close to one of natural modes of the resonator. Largely amplified potential energy due to the resonance supplies clean seawater into the harbor side throughout the channel. Flow supplied by the resonator circulates the seawater of harbor and helps to improve water quality. Within the framework of linear potential theory, matched asymptotic expansion method is employed to analyze the wave responses in a resonator. The semi-circular shape of the resonator has been chosen as an analytic model for mathematical simplicity. The wave responses of both single and arrays of Helmholtz resonator are investi¬gated. To validate an analytic solution, model test is conducted at 2-dimensional wave tanle Wave hcights in the resonator and velocity at the channel are measured for the state of valve-on and valve-off.

  • PDF

Analysis and verification of the characteristic of a compact free-flooded ring transducer made of single crystals (압전단결정을 이용한 소형 free-flooded ring 트랜스듀서의 성능 특성 예측 및 검증)

  • Im, Jongbeom;Yoon, Hongwoo;Kwon, Byungjin;Kim, Kyungseop;Lee, Jeongmin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.278-286
    • /
    • 2022
  • In this study, a 33-mode Free-Flooded Ring (FFR) transducer was designed to apply piezoelectric single crystal PIN-PMN-PT, which has high piezoelectric constants and electromechanical coupling coefficient. To ensure low-frequency high transmitting sensitivity characteristics with a small size of FFR transducer, the commercial FFR transducer based on piezoelectric ceramics was compared. To develop the FFR transducer with broadband characteristics, a piezoelectric segmented ring structure inserted with inactive elements was applied. The oil-filled structure was applied to minimize the change of acoustic characteristics of the ring transducer. It was verified that the transmitting voltage response, underwater impedance, and beam pattern matched the finite element numerical simulation results well through an acoustic test. The difference in the transmitting voltage response between the measured and the simulated results is about 1.3 dB in cavity mode and about 0.3 dB in radial mode. The fabricated FFR transducer had a higher transmitting voltage response compared to the commercial transducer, but the diameter was reduced by about 17 %. From this study, it was confirmed that the feasibility of a single crystal-applied FFR transducer with compact size and high-power characteristics. The effectiveness of the performance prediction by simulation was also confirmed.

Development of Simulator for surface acoustic wave filters (표면탄성파 필터 설계용 시뮬레이션 개발)

  • Kwon, Hee-Doo;Yoon, Yung-Sup;Kim, Dong-Il;Ruy, Jae-Gu;Ryu, Jae-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.64-73
    • /
    • 1995
  • We developed a surface acoustic wave (SAW) computer aided design (CAD) for mobile communication using Kaier window function. The systems are composed of modules for designing apodization weighted IDT-uniform IDT, withdrawal weighted IDT-withdrawal weighted IDT, and resonator type. The design of SAW bandpass with center frequencies from 222MHz to 343MHz were simulated by the developed CAD system. Although the method proposed in this paper is formulated primarily for SAW filters, it is equally applicable to finite impulse response (FIR) digital filter design.

  • PDF

Development of Acoustic Emission(AE) Sensor for Prognosis Detection of Bearing Fault (베어링 고장 예후검출을 위한 음향 방출(AE)센서 개발)

  • Lee, Chibum;Kim, Gyeongwoo;Park, Yeong-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.6
    • /
    • pp.429-436
    • /
    • 2014
  • Most mechanical systems are now operating consistently and getting faster due to the development of automation systems. Peoples' dependence on machines have increased as when problems occur within the mechanical system, personal injury and production loss may come as a result, as most of the mechanical system's malfunctions are caused by the failure of the rotational bearing. What we need now is a maintenance system that can warn us when it detects abnormal conditions before significant damage occurs to the bearing. In this study, we have developed an acoustic emissions sensor that can figure if the bearing works under the normal condition. With this acoustic emissions sensor, we can inspect the bearing for defects by using the Heterodyne technique, which converts the ultrasound signal into audio, as a signal conditioning process.

Simulating Combustion Tests for the Verification of Baffle Gap of Optimal Damping Characteristics in Liquid Rocket Combustors (로켓연소기에서 최적의 감쇠특성을 보이는 분사기형 배플의 간극 검증을 위한 상압모사연소시험)

  • Kim, Hong-Jip;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.179-185
    • /
    • 2008
  • Simulating combustion tests have been performed to elucidate the effect of baffle gaps on the optimal damping characteristics in liquid rocket combustors where coaxial injectors are installed. Amplitude of pressure oscillation in model combustion chamber and the combustion stability margin are used to quantify the damping capacitance of baffles. Satisfactory agreement has been achieved with the results of cold acoustic tests. Present results have shown that the optimal gap for high acoustic damping capacity has also the large combustion stability margin in simulating combustion tests. Therefore, the present results can be utilized to determine the baffle length and optimal gap in full-scaled rocket combustors.

Development of Acoustic Resonance Evaluation System to Detect the Welding Defects (용접 불량 검사를 위한 음향공진 검사 장치 개발)

  • Yeom, Woo Jung;Kim, Jin Young;Hong, Yeon Chan;Kang, Joonhee
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.371-376
    • /
    • 2019
  • We have developed an acoustic resonance inspection system to inspect the welding defects in the mechanical parts fabricated using friction stir welding method. The inspection system was consisted of a DAQ board, a microphone sensor, an impact hammer, and controlled by a PC software. The system was developed to collect and analyze the sound signal generated by hitting the sample with an impact hammer to determine whether it is defective. In this study, 100% welded good samples were compared with 95%, 90%, and 85% welded samples, respectively. The variation of the completeness in welding did not affect the visual appearance in the samples. As a result of analyzing the natural frequencies of the good samples, the five natural frequency peaks were identified. In the case of the defective samples, the frequency change was observed. The welding failure detection time was fast enough to be only 0.7 seconds. Employing our welding defect inspection system to the actual industrial field will maximize the efficiency of quality inspection and thus improve the productivity.

Pressure-Oscillation Damping Characteristics of an Orifice in a Fluid Feeding Line with Mean Flow (평균유동이 있는 유체 공급배관내 오리피스의 압력섭동 감쇠 특성)

  • Lee, Tae-Young;Kim, Chul-Jin;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.359-362
    • /
    • 2009
  • Damping characteristics of pressure oscillation induced by an orifice in fluid feeding line for are investigated numerically and experimentally. Assuming small pressure oscillation, acoustic damping effect of orifice is confirmed experimentally, and with the mean flow, damping characteristics of an orifice are investigated numerically. When an orifice is installed at the node of pressure oscillation corresponding to the anti-node of velocity oscillation, suppression of pressure oscillation is maximized and with the mean flow, the resonant frequency is decreased. And, it is found that the optimal position of an orifice for damping shouled be changed.

  • PDF

An Identification Method for Complex-Valued Material Properties of Piezoelectric Ceramics (압전 세라믹의 복소 재료 정수 규명)

  • Joh, Chee-Young;Seo, Hee-Seon;Kim, Dae-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.83-88
    • /
    • 1995
  • The common practice for the identification of piezoelectric properties is based on the use of immittance of a resonator with a certain geometry and poling direction. In this paper, a new method is suggested to identify the complex-valued piezoelectric material constants. This method Is based on the minimization of differences between the analytical immittance and the experimental measurement of resonator. Non-linear minimization problems are formulated to find out the unknown properties relevant to the resonators. The immittance data used for identification are measured at a number of frequencies which cover the vicinity of resonance frequency and the low frequency region. To illustrate the proposed technique, the complex-valued coefficients are identified for a typical PZT4 ceramic composition.

  • PDF

development of Ultrasonic waterdrop Repellers for Glass Plates (유리판용 초음파 물기 제거기 개발)

  • Jung, Yi-Bong;Lee, Young-Jin;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.12-17
    • /
    • 1997
  • In this work, we developed a new type ultrasonic dehumidifier with piezoelectric ceramics, which and efficiently repel waterdrops on outdoor glass plates exposed to raindrops. Through finite element analysis of a certain type of glass plates to analyze its dynamic behavior, the structure of the ultrasonic device we determined to get the optimal performance. A supplemental metal plate was attached to the glass plate for uniform cleaning. Based on the theoretical results, experimental samples were fabricated and evaluated with various dimensions of the glass plate and the piezoceramic vibrator. Driving circuit for the dehumidifier made use of the frequency sweeping technique to keep track of the resonant frequency of the glass plate that was variant with environmental conditions.

  • PDF