• Title/Summary/Keyword: 음향경계요소법

Search Result 98, Processing Time 0.021 seconds

Development of Noise Analysis Program by using Power Flow Analysis in Medium-to-high Frequency Ranges (파워흐름해석법을 이용한 중고주파수 대역 소음해석 프로그램 개발)

  • Kwon, Hyun-Wung;Song, Jee-Hun;Hong, Suk-Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.5
    • /
    • pp.384-390
    • /
    • 2012
  • Power Flow Analysis (PFA) is introduced for solving the noise and vibration analysis of structures in medium-to-high frequency ranges. The vibration analysis software, $PFADS_{C{+}{+}}$ R4 based on Power Flow Finite Element Method (PFFEM) and the noise prediction software, $NASPFA_{C{+}{+}}$ R1 based on Power Flow Boundary Element Method (PFBEM) are developed. In this paper, the coupling equation which represents relation between structural energy and acoustic energy is developed for vibro-acoustic coupling analysis. And vibro-acoustic coupling analysis software based on PFA and coupling equation is developed. Developed software is composed of translator, cavity-finder, solver and post-processor over all. Translator can translate FE model into PFADS FE model and cavity-finder can automatically make NASPFA BE model from PFADS FE model for noise analysis. The solver module calculates the structural energy density, intensity of structures, the fictitious source on the boundary and the acoustic energy density at the field in acoustic cavities. Some applications of vibro-acoustic coupling analysis software to various structures and cruise ship are shown with reliable results.

On the Source Identification by Using the Sound Intensity Technique in the Radiated Acoustic Field from Complicated Vibro-acoustic Sources (음향 인텐시티 기법을 이용한 복잡한 진동-음향계의 방사 음장에 대한 음원 탐색에 관하여)

  • 강승천;이정권
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.708-718
    • /
    • 2002
  • In this paper, the problems in identifying the noise sources by using the sound intensity technique are dealt with for the general radiated near-field from vibro-acoustic sources. For this purpose, a three-dimensional model structure resembling the engine room of a car or heavy equipment is considered. Similar to the practical situations, the model contains many mutually coherent and incoherent noise sources distributed on the complicated surfaces. The sources are located on the narrow, connected, reflecting planes constructed with rigid boxes, of which a small clearance exists between the whole box structure and the reflecting bottom. The acoustic boundary element method is employed to calculate the acoustic intensity at the near-field surfaces and interior spaces. The effects of relative source phases, frequencies, and locations are investigated, from which the results are illustrated by the contour map, vector plot, and energy streamlines. It is clearly observed that the application of sound intensity technique to the reactive or reverberant field, e.g., scanning over the upper engine room as is usually practiced, can yield the detection of fake sources. For the precise result for such a field, the field reactivity should be checked a priori and the proper effort should be directed to reduce or improve the reactivity of sound field.

Computation of Internal BPF Noise of Axial Circulating Fan in Refrigerators (냉장고 내 냉기순환용 축류홴에 의한 내부 블레이드-통과-주파수 소음 예측)

  • Lee, Seung-Yub;Heo, Seung;Cheong, Cheol-Ung;Kim, Seok-Ro;Seo, Min-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.454-461
    • /
    • 2009
  • Internal aeroacoustics of an axial fan used for circulating cold air in refrigerators are computed by using the hybrid method where CFD, acoustic analogy and BEM techniques are utilized. The unsteady flow field around the axial fan is predicted by solving the incompressible RANS equations with the conventional CFD techniques. Then, main noise sources are extracted from this unsteady flow field predictions using Acoustic Analogy. Lastly, BPF noise generated from an axial fan are predicted using these modeled sources combined with the tailed Green function techniques, which are numerically solved by the BEM technique. This hybrid model is validated by comparing the prediction with the experiment. Then, parameter studies are carried out, which suggest a capability of the current method as a design tool for the low-noise of the current axial fan system in a refrigerator.

The Noise Reduction Effect by the Enclosure of Gas Turbines (가스터빈 차폐막의 소음 저감효과에 관한 연구)

  • Park, Dae Hun;Shin, Yoo In;Park, Sung Gyu;Kim, Kang Il;Song, Chul Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.287-292
    • /
    • 2017
  • A gas turbine is the main equipment used in a combined heat and power plant. It generates a high sound pressure noise level. To reduce the noise level, an enclosure is installed around the turbine. The sound insulation performance of the enclosure affects the amount of external noise reduction. In this study, a sound transmission loss analysis is performed using the boundary element method to predict sound insulation performance according to the numbers and shapes of the supporter. Radiated noise analysis is also performed for the main external points of the enclosure using ray-acoustics. The results of these analyses are presented and a design plan is proposed that reduces the sound pressure noise level of the enclosure.

Comparative Study on Viscous and Inviscid Analysis of Partial Cavitating Flow for Low Noise Propeller Design (저소음 프로펠러 설계를 위한 부분공동 유동의 점성 및 비점성 수치해석 비교 연구)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon;Park, Cheol-Soo;Kim, Gun-Do
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.358-365
    • /
    • 2014
  • When a ship propeller having wing type sections rotates at high speed underwater, local pressure on the blade decreases and various types of the cavitation inevitably occur where the local pressure falls below the vapor pressure. Fundamentally characteristics of the cavitation are determined by the shapes of the blade section and their operating conditions. Underwater noise radiated from a ship propeller is directly connected to the occurrence of the cavitation. In order to design low noise propeller, it is preferentially demanded to figure out key features: how the cavity is generated, developed and collapsed and how the effect of viscosity works in the process. In this study, we first perform inviscid analysis of the partial cavity generated on two dimensional hydrofoil. Secondly, viscous analysis using FLUENT with different turbulence and cavitation models are presented. Results from both approaches are also compared and estimated.

Efficient Prediction of Broadband Noise of a Centrifugal Fan Using U-FRPM Technique (U-FRPM 기법을 이용한 원심팬 광대역소음의 효율적 예측)

  • Heo, Seung;Cheong, Chulung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.36-45
    • /
    • 2015
  • Recently, a lot of studies have been made about the methods used to generate turbulent velocity fields stochastically in order to effectively predict broadband flow noise. Among them, the FRPM (Fast Random Particle Mesh) method which generates turbulence with specific statistical properties using turbulence kinetic energy and dissipation obtained from the steady solution of the RANS (Reynolds Averaged Navier-Stokes) equations has been successfully applied. However, the FRPM method cannot be applied to the flow noise problems involving intrinsic unsteady characteristics such as centrifugal fan. In this paper, to effectively predict the broadband noise generated by centrifugal fan, U-FRPM (unsteady FRPM) method is developed by extending the FRPM method to be combined with the unsteady numerical solutions of the unsteady RANS equations to generate the turbulence considered as broadband noise sources. Firstly, an unsteady flow field is obtained from the unsteady RANS equations through CFD (Computational Fluid Dynamics). Then, noise sources are generated using the U-FRPM method combined with acoustic analogy. Finally, the linear propagation model which is realized through BEM (Boundary Element Method) is combined with the generated sources to predict broadband noise at the listeners' position. The proposed technique is validated to compare its prediction result with the measured data.

Submarine bistatic target strength analysis based on bistatic-to-monostatic conversion (양상태-단상태 변환 기반 잠수함 양상태 표적강도 해석)

  • Kookhyun Kim;Sung-Ju Park;Keunhwa Lee;Dae-Seung Cho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.138-144
    • /
    • 2024
  • This paper presents a bistatic to monostatic conversion technique to analyze the bistatic target strength of submarines. The technique involves determining the transmission path length of acoustic waves, which are emitted from a source, scattered off an underwater target, and eventually received by a receiver. By generating a corresponding virtual scattering surface, this method effectively transforms the target strength analysis problem from bistatic to monostatic. The converted monostatic target strength problem can be assessed using a well-established monostatic numerical methods. The bistatic target strength analysis for Benchmark Target Strength Simulation (BeTTSi), a widely used target strength model were performed. The results were compared with those calculated by boundary element methods and Kirchhoff approximation, and confirmed the validity and the practical applicability of the proposed analysis technique for evaluating submarine target strength.

An Experimental Study on the Noise Reduction of Cooling Fans for Four-ton Forklift Machines (4톤급 지게차 냉각홴 소음 저감에 관한 실험적 연구)

  • Choi, Daesik;Kim, Seokwoo;Yeom, Taeyoung;Lee, Seungbae
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This paper presents research on methods for the reduction of forklifts' noise level for the increased comfort and safety of its operator. A cooling fan with a high air volume flow rate installed in the forklift acts as an important design parameter which efficiently cools the heat exchanger system, helping to transfer internal heat from the engine room to the outdoors with both transmitted and diffracted opening noises. The cooling fan contributes significantly to both the forklift's emitted sound power and the operator room's noise level, thereby necessitating research on the forklift's reduction of acoustic power level and transmission. A noise analysis for various fan models with a biomimetic design based on eagle-wing geometry was conducted. In addition to the acoustic power generation, the aerodynamic performance of the cooling blade is also strongly influenced by the design of airfoil distribution, thereby requiring optimization. The cooling fans were fabricated and installed in the forklift in order to check the efficacy of the forklift engine's cooling, and the final version of the fan was measured for its ability to lower acoustic power level and cool the engine room. This study explains the aerodynamic and acoustic features of the designed fans with the use of BEM analysis and forklift test results.