• Title/Summary/Keyword: 음질 요소

Search Result 71, Processing Time 0.027 seconds

A Study on Development of Sound Quality Index of a Refrigerator Based on Human Sensibility Engineering (인공지능망을 이용한 냉장고 정상 가동 운전 상태의 음질 인덱스 개발)

  • 구진회;김중래;이은영;이상권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.991-996
    • /
    • 2004
  • The international competition in refrigerator markets has continuously required the research for sound quality of a refrigerator to improve the quality of a life. In this paper, A new method for evaluation of the sound quality of a refrigerator is developed based on human sensibility engineering by using ANN(Artificial neural network). Finally it is applied to evaluate the sound qualify of refrigerator on the production line.

  • PDF

Development of Index for Sound Quality Evaluation of Vacuum Cleaner (인공지능망을 이용한 진공청소기 음질 인덱스 개발)

  • 구진회;전완호;김창준;이상준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.1003-1008
    • /
    • 2004
  • In our life, we have used many digital appliances. They helped us to improve the quality of lift but sometimes gave us unsatisfactory result because they produce specific noise. Especially a vacuum cleaner produces a great deal of noise that is very annoying. So we need to study what sound metrics affect human sensibility. In this paper, we will study sound quality index for vacuum cleaner. The subjective evaluation of vacuum cleaner sound can be indicated to objective parameters by sound metrics of psychoacoustics. The artificial neural network can estimate the nonlinear characteristics of relation between subjective evaluation and sound metrics. We applied the artificial neural network to the development of sound quality index for vacuum sound.

  • PDF

Transient Rumbling Index Development of Sound Quality on a Passenger Car (승용차 과도음에 대한 럼블링 음질 인덱스 개발)

  • 김병수;이상권;박동철;정승균
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.377-382
    • /
    • 2003
  • In our previous study, we have developed sound quality index for steady rumbling sound of passenger car. In this paper, we will study sound quality index for transient rumbling noise. The subjective evaluation of rumbling sound can be indicated to objective parameters by sound metrics of psychoacoustics and principal rumble component. And artificial neural network can be estimated complexity and nonlinear characteristics of relation between subjective evaluation and sound metrics. We applied to sound metrics and artificial neural network to development of sound quality index for transient rumbling sound of passenger car.

  • PDF

Development of Sound Quality Index of a SUV' Axle for Evaluation of Enhancement of Sound Quality Based on Human Sensibility (인간의 감성에 기초한 승합차량 액슬의 음질 인덱스 개발에 대한 연구)

  • Lim Jong-Tae;Jo Yun-Kyoung;Kim Jong-Youn;Lee Sang -Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.654-660
    • /
    • 2006
  • There are various sounds in the car as much as cats have many mechanical parts. These sounds make various sound qualities. The international competition in car markets has continuously required the research about the sound quality of a car. The domestic carmakers have also invested a lot of money for the research and development of sound quality. Car axle plays an important role in a vehicle and its NVH development is also important. By this time, NVH development of car axle is mainly based on the reduction of sound pressure level(dBA), which cannot gives, the satisfaction to the customers in view of the sound quality of a vehicle. Therefore, in this project, a sound quality index evaluating the sound quality of axle noise based on human sensibility is developed and applied to the development of the sound quality of axle noise

  • PDF

Analysis of Objective Sound Quality Features for Vacuum Cleaner Noise (청소기 소음 측정을 위한 객관적 음질 특성 분석)

  • Lee, Sang-Wook;Cho, Youn;Park, Jong-Geun;Hwang, Dae-Sun;Song, Chi-Mun;Lee, Chul-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.258-264
    • /
    • 2010
  • In this paper, we propose an objective quality feature which is based on the human auditory system to measure vacuum cleaner noise. It is observed that some frequency bands are more sensitive to the human auditory system. Therefore, we divided the audible frequency range of vacuum cleaner noise into a number of frequency bands and the average energy of these bands was calculated. Among a number of average energies, an average energy of a frequency band was selected as the proposed feature. In order to test the performance of the proposed feature, fourteen vacuum cleaners were chosen and the noise was recorded in an anechoic-chamber. Then we performed subjective tests to obtain subjective scores of the noise data using the PCM (paired comparison method) and ACR (absolute category rating) subjective methods. The proposed objective quality feature shows high correlation with the subjective scores.

Development of Sound Quality Evaluation System for a Printer Noise Based on Human Sensibility (프린터 소음에 대한 감성소음 평가 시스템 개발)

  • Park, Sang-Won;Lee, Hyun-Ho;Na, Eun-Woo;Lee, Sang-Kwon;Park, Yeong-Jae;Kim, Jong-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.427-436
    • /
    • 2010
  • The printer sound has many aspects which define its quality because the printer has lots of components and its operation is very complicated. These sound qualities are related to the international competition in printer markets. Recordings inside anechoic chamber were analyzed and a large number of sounds were stimulated using digital signal processing technique. First subjective tests of the printer sound were conducted using semantic different method. By applying factor analysis to the subjective response, two important factors of sound quality were extracted. Second subjective tests were conducted to evaluate the quietness and the impulsiveness of the printer sounds. On the other hand, sound metrics are calculated applying psychoacoustic theories. In this paper, the nonlinear relation between subjective evaluation and sound metrics was identified using artificial neural network and the printer sound quality index was developed. Later, subjective sound quality evaluation will be estimated and evaluated using this index.

The evaluation of Sound Power Level and development of index for Sound Quality of Vacuum Cleaner according to performances of Sound Absorbtion Materials (흡음재 성능에 따른 진공청소기의 음향파워 평가 및 음질인덱스 개발)

  • Kwon, Hyuk-Je;Lee, Sang-Kwon;Gu, Jin-Hoi;Lee, Hyun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.112-120
    • /
    • 2008
  • Today, the use of a vacuum cleaner gave us the higher quality of life than past time, but sometimes made us w1comfortable in the house because of the specific noise that is annoying. So we need to study how sound absorbtion materials affect sound power level and sound quality with sound metrics. In this paper, we will measure and calculate sound power level for vacuum cleaner and analyze characteristics of the noise for 10 Signals according to materials positioned in vacuum cleaner. The multiple regression analysis can estimate the nonlinear characteristics of relation between subjective evaluation and sound metrics. So we will develop sound quality index for vacuum sound.

  • PDF

New Development of Two-Dimensional Sound Quality Index for Brand sound in Passenger Cars (승용차 브랜드 사운드를 위한 이차원 음질 인덱스 개발)

  • Jo, Byoung-Ok;Lee, Sang-Kwon;Park, Dong-Chul;Lee, Min-Sub;Jung, Seung-Gyoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.174-179
    • /
    • 2005
  • In automotive engineering, the brand sound is one of the important advantage strategy in a car company. For the design of brand sound, the selection of descriptive word for a car sound is one of major works in automotive sound quality research. In paper, booming sound and rumbling sound, which are professional words used by NVH engineers are used for the design of brand sound. We employed sound metrics which are the subjective parameter used in psychoacoustics. According to most research results, the relationship between subjective evaluations and sound metrics has nonlinear characteristics and is very complex. In order to link these subjective evaluations to sound metrics, the artificial neural network technology has been applied to two-dimensional sound quality index for a passenger car. These indexes is used for 46 passenger cars, which are samples of famous cars in the world. Also the preference in car sounds is evaluated by the trained NVH engineers. We coupled this preference with booming and rumbling sounds by using artificial neural network. In future, the two -dimensional sound index and preference index are very useful fur the development of brand sound in passenger cars.

  • PDF

A Study on Development of Sound Quality Index of a Refrigerator Based on Human Sensibility Engineering (감성공학을 기초한 냉장고의 음질 인덱스 개발에 관한 연구)

  • 구진회;김중래;이은영
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1195-1202
    • /
    • 2004
  • The international competition in refrigerator markets has continuously required the research for sound quality of a refrigerator to improve the quality of a life. In this paper, A new method for evaluation of the sound quality of a refrigerator is developed based on human sensibility engineering by using ANN(artificial neural network). In this paper, the loudness and the sharpness of the refrigerator's signals was used for the input value in ANN's training process because the loudness and the sharpness has a good correlation between the output of the ANN and the target of the individual evaluation In the training process. Two input factor was used repeatedly in the training process to get more optimum weighting value. And then finally we developed the sound quality index of a refrigerator. The developed sound quality index was confirmed by the 96.5 % of correlation between the output of the ANN and the real evaluation. It will be applied to evaluate the sound quality of a refrigerator in the industry.

Development of Index for Sound Quality Evaluation of Vacuum Cleaner Based on Human Sensibility Engineering (감성공학을 기초한 진공청소기의 음질 인덱스 개발)

  • Gu, Jin-Hoi;Lee, Sang-kwon;Jeon, Wan-Ho;Kim, Chang-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.821-828
    • /
    • 2005
  • In our life, we have used many digital appliances. They help us to improve the quality of life but sometimes give us unsatisfactory result. Because they produce specific noise. Especially vacuum cleaner produce much noise that is very annoying. So we need to study what sound metrics affect human sensibility. In this paper, we develop sound quality index for vacuum cleaner using the sound quality metrics defined in psychoacoustics. First, we carry out the subjective evaluation of vacuum cleaner sound to verify what vacuum sound feels good to human. And then artificial neural network estimated the complexity and the nonlinear characteristics of the relations between subjective evaluation and sound metrics. Finally the ANN is trained repeatedly to have a good performance for sound qualify index of the vacuum cleaner. As a result, the sound quality index of vacuum cleaner has a correlation of $93.5\%$ between the subjective evaluation and ANN. So, there exist three factors that Is loudness, sharpness, roughness which affect the sound quality of vacuum cleaner.