• Title/Summary/Keyword: 음이항모형

Search Result 104, Processing Time 0.019 seconds

Ex-ante and Ex-post Economic Value Analysis on Ecological River Restoration Project (생태하천복원사업 전후 경제적 가치 비교분석)

  • Lee, Yoon;Chang, Hoon;Yoon, Taeyeon;Chung, Young-Keun;Park, Heeyoung
    • Journal of the Korean Regional Science Association
    • /
    • v.31 no.3
    • /
    • pp.39-54
    • /
    • 2015
  • To assess an economic value of Cheonggyecheon river restoration project, an in-depth exit survey data was collected to apply travel cost method in this study. Poisson model, Negative Binomial, Zero-truncated Poisson, and Zero-truncated Negative Binomial model were executed due to the nature of count data. Empirical results showed that regressors were statistically significant and corresponded to general consumer theory. Since our survey data showed over-dispersion, Zero-truncated Negative Binomial was selected as an optimal one to analyze travel demand of Cheonggyecheon by model goodness of fit test among those aforementioned empirical models. Estimating an economic value of Cheonggyecheon river restoration project, which is known as an ecological river restoration project, we used annual visit of individual traveler and an optimal model. Suffice to say that the annual economic value of Cheonggyecheon river restoration project was estimated as 193.4 billion won in 2013.

Fit of the number of insurance solicitor's turnovers using zero-inflated negative binomial regression (영과잉 음이항회귀 모형을 이용한 보험설계사들의 이직횟수 적합)

  • Chun, Heuiju
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1087-1097
    • /
    • 2017
  • This study aims to find the best model to fit the number of insurance solicitor's turnovers of life insurance companies using count data regression models such as poisson regression, negative binomial regression, zero-inflated poisson regression, or zero-inflated negative binomial regression. Out of the four models, zero-inflated negative binomial model has been selected based on AIC and SBC criteria, which is due to over-dispersion and high proportion of zero-counts. The significant factors to affect insurance solicitor's turnover found to be a work period in current company, a total work period as financial planner, an affiliated corporation, and channel management satisfaction. We also have found that as the job satisfaction or the channel management satisfaction gets lower as channel management satisfaction, the number of insurance solicitor's turnovers increases. In addition, the total work period as financial planner has positive relationship with the number of insurance solicitor's turnovers, but the work period in current company has negative relationship with it.

Estimating the Economic Value of Recreation Sea Fishing in the Yellow Sea: An Application of Count Data Model (가산자료모형을 이용한 서해 태안군 유어객의 편익추정)

  • Choi, Jong Du
    • Environmental and Resource Economics Review
    • /
    • v.23 no.2
    • /
    • pp.331-347
    • /
    • 2014
  • The purpose of this study is to estimate the economic value of the recreational sea fishing in the Yellow Sea using count data model. For estimating consumer surplus, we used several count data model of travel cost recreation demand such as a poisson model(PM), a negative binomial model(NBM), a truncated poisson model(TPM), and a truncated negative binomial model(TNBM). Model results show that there is no exist the over-dispersion problem and a NBM was statistically more suitable than the other models. All parameters estimated are statistically significant and theoretically valid. The NBM was applied to estimate the travel demand and consumer surplus. The consumer surplus pre trip was estimated to be 254,453won, total consumer surplus per person and per year 1,536,896won.

Accident Models of Rotary by Vehicle Type (차량유형별 로터리 사고모형)

  • Han, Su-San;Park, Byeong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.67-74
    • /
    • 2011
  • This study deals with the traffic accidents data from the Korean rotaries (circular intersections) to verify their characteristics affected by different vehicle types. This paper categorized the data into three groups based on vehicle types, and developed a set of accident models. The paper proposed two ZIP models and one negative binomial model through a statistical analysis for three vehicle types: automobile, truck and van, and others. The differences among those models were then statistically compared.

A Bayesian zero-inflated negative binomial regression model based on Pólya-Gamma latent variables with an application to pharmaceutical data (폴랴-감마 잠재변수에 기반한 베이지안 영과잉 음이항 회귀모형: 약학 자료에의 응용)

  • Seo, Gi Tae;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.2
    • /
    • pp.311-325
    • /
    • 2022
  • For count responses, the situation of excess zeros often occurs in various research fields. Zero-inflated model is a common choice for modeling such count data. Bayesian inference for the zero-inflated model has long been recognized as a hard problem because the form of conditional posterior distribution is not in closed form. Recently, however, Pillow and Scott (2012) and Polson et al. (2013) proposed a Pólya-Gamma data-augmentation strategy for logistic and negative binomial models, facilitating Bayesian inference for the zero-inflated model. We apply Bayesian zero-inflated negative binomial regression model to longitudinal pharmaceutical data which have been previously analyzed by Min and Agresti (2005). To facilitate posterior sampling for longitudinal zero-inflated model, we use the Pólya-Gamma data-augmentation strategy.

An Analysis on the Determinants of Employed Labour Quantity in the Fishing Industry (어가의 고용량 결정요인 분석)

  • Kim, Tae-Hyun;Park, Cheol-Hyung;Nam, Jongoh
    • Environmental and Resource Economics Review
    • /
    • v.27 no.3
    • /
    • pp.545-567
    • /
    • 2018
  • This study applied and compared Poisson model, negative binomial model, zero inflated Poisson model, and zero inflated negative binomial model to estimate determinants of employed labour quantity. To estimate each of models, this study used fisheries census data which were obtained at microdata integrated service running by Statistics Korea. The study selected zero inflated negative binomial model according to the Vuong test and Likelihood-ratio test. In addition, the study estimated fishing village's practical changes on employed labour quantity as analyzing changes from 2010 to 2015. The results showed that the household with fishing vessels and high selling price had a significant effect on decrease of the labour quantities. Meanwhile, the longer work experience of the household, the more significant the increase in the labour quantities. In conclusion, this study presented that capitalized fishing household and the acceleration of aging had a significant impact on the change in the labour quantities.

Bivariate Zero-Inflated Negative Binomial Regression Model with Heterogeneous Dispersions (서로 다른 산포를 허용하는 이변량 영과잉 음이항 회귀모형)

  • Kim, Dong-Seok;Jeong, Seul-Gi;Lee, Dong-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.5
    • /
    • pp.571-579
    • /
    • 2011
  • We propose a new bivariate zero-inflated negative binomial regression model to allow heterogeneous dispersions. To show the performance of our proposed model, Health Care data in Deb and Trivedi (1997) are used to compare it with the other bivariate zero-inflated negative binomial model proposed by Wang (2003) that has a common dispersion between the two response variables. This empirical study shows better results from the views of log-likelihood and AIC.

Zero-Inflated INGARCH Using Conditional Poisson and Negative Binomial: Data Application (조건부 포아송 및 음이항 분포를 이용한 영-과잉 INGARCH 자료 분석)

  • Yoon, J.E.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.583-592
    • /
    • 2015
  • Zero-inflation has recently attracted much attention in integer-valued time series. This article deals with conditional variance (volatility) modeling for the zero-inflated count time series. We incorporate zero-inflation property into integer-valued GARCH (INGARCH) via conditional Poisson and negative binomial marginals. The Cholera frequency time series is analyzed as a data application. Estimation is carried out using EM-algorithm as suggested by Zhu (2012).

A Development of Traffic Accident Model by Random Parameter : Focus on Capital Area and Busan 4-legs Signalized Intersections (확률모수를 이용한 교통사고예측모형 개발 -수도권 및 부산광역시 4지 교차로를 대상으로-)

  • Lee, Geun-Hee;Rho, Jeong-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.91-99
    • /
    • 2015
  • This study intends to build a traffic accident predictive model considering road geometrics, traffic and enviromental characteristics and identify the relationship of 4-legs intersection accidents in Seoul and Busan metropolitan area. The RPNB(Random Parameter Negative Binomial) model shows improvement over the fixed NB(Negative Binomial) and out of 53 variables, 10 variables (main road number of lane, main road vehicle traffic volume(left), minor road vehicle traffic volume(right), main road drive restriction, minor road sight distance, minor road median strip, minor road speed limit, minor road speed restriction) showed to have significant variables affecting traffic accident occurrences in 4-legs signilized intersections. Also, among 10 significant variables, 2 variables(minor road sight distance, minor road speed restriction) found to be random parameters.

Comparative Study of Model Selection Using Bayes Factor through Simulation : Poisson vs. Negative Binomial Model Selection and Normal, Double Exponential vs. Cauchy Model Selection (시뮬레이션을 통한 베이즈요인에 의한 모형선택의 비교연구 : 포아송, 음이항모형의 선택과 정규, 이중지수, 코쉬모형의 선택)

  • 오미라;윤소영;심정욱;손영숙
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.335-349
    • /
    • 2003
  • In this paper, we use Bayesian method for model selection of poisson vs. negative binomial distribution, and normal, double exponential vs. cauchy distribution. The fractional Bayes factor of O'Hagan (1995) was applied to Bayesian model selection under the assumption of noninformative improper priors for all parameters in the models. Through the analyses of real data and simulation data, we examine the usefulness of the fractional Bayes factor in comparison with intrinsic Bayes factors of Berger and Pericchi (1996, 1998).