본 논문은 웹 상에서 음악을 듣는 사용자의 음악 취향을 평가 한 후, 취향에 맞는 인터페이스를 추천하는 시스템을 구현하였다. 초기 음악 취향 평가 단계에서는 평가 요소인 장르, 가수, 최신곡에 대한 사용자 데이터와 평가 요소에 대한 실험을 통해 얻은 중요도를 이용하여 퍼지측도.적분을 수행한다. 수행 결과 값이 높은 음악의 평가 요소에 의해 인터페이스를 추천하고, 추천된 인터페이스에 대한 선택 곡 수와 들은 시간으로 퍼지 추론을 통해 인터페이스에 대한 만족도를 평가한다. 평가된 만족도에 의해 중요도를 변경시킴으로써 사용자의 취향에 맞는 인터페이스를 제공하는 시스템 을 제안한다.
최근 음악을 장르로 분류하는 다양한 연구가 진행되고 있다. 하지만 이러한 분류는 전문가들 마다 분류하는 기준이 서로 상이하여 정확한 결과를 도출하기가 쉽지 않다. 또한 새로운 장르 출현 시, 새롭게 정의해야하는 번거로움이 발생한다. 따라서 음악을 장르로 구분하기 보다는 감정형용사들로 분류, 검색하여야 한다. 선행연구에서는 밝고 어두움을 기준으로 음악을 분류 하였다. 본 논문에서는 선행연구를 포함하여 사람이 느끼는 감정 중, 격렬함과 잔잔함, 그리고 웅장함과 가벼움 등, 3가지 분류 기준을 가지고 분위기에 알맞은 검색을 위한 감정 형용사 기반의 음악 분류 시스템을 제안한다. 분류 알고리즘으로는 Support Vector Machine을 개선한 알고리즘인 Variance Considered Machines을 이용하였으며, 총 525개의 곡을 분류 시도한 결과, 약 85%의 분류 정확도를 나타내었다.
정서 전달에는 언어적 의사소통뿐만 아니라 비언어적 의사소통이 거론되곤 한다. 하지만 지금까지의 비언어적 의사소통 연구는 대부분 언어의 음향학적 연구나 얼굴표정 연구에 국한되었다. 또한 음악의 정서에 대한 연구는 음악적 구조 혹은 스타일과 여러 성격적 특질 및 행동 간의 관계, 혹은 생리적 효과 등 어떤 음악(what music)이 특정한 효과를 일으키느냐에 중점을 두고 있었다. 따라서 본 연구에서는 Gabrielsson & Juslin(1996)의 연구에 의거, 음악을 통하여 작곡가가 아닌 연주자의 의도된 정서가 청자에게 얼마나 잘 지각될 수 있는지 알아보고자 하였다. 봉 녕구의 가설은 다음과 같다; 첫째, 연주자의 정서적 의도는 음악의 모든 물리적 변인에 영향을 준다; 둘째, 청자는 의도된 정서를 지각하는 데 일반적으로 성공적이다; 셋째, 특정 정서는 다른 정서보다 더 잘 구분된다. 본 연구에 사용된 곡은 학습 효과를 배제하기 위하여 새롭게 전문 작곡가에 의해 작곡되었으며, 전문 연주자는 동일한 곡을 7종류의 정서(행복한, 슬픈, 화난, 두려운, 다정한, 엄숙한, 정서 표현 없음)를 표현하도록 연주하였다. 하나의 완전한 음악을 표현하기 위하여 각 곡은 멜로디(악기구성: 일렉트릭 기타, 베이스, 그랜드 피아노)와 리듬(드럼)을 포함하였다. 실험참가자는 각 곡을 듣고 7개의 정서 종류 각각에 점수를 평정하였다. 그 결과 이전 연구와 마찬가지로 청자는 연주자의 의도된 정서를 일반적으로 지각하는 데 성공하였으며 7개의 정서 중 특징적인 정서("행복한", "슬픈", "화난", "다정한") 는 다른 정서 보다 더 잘 구별되었다. 본 연구에 사용된 "두려운" 정서 곡의 음향분석 결과 소리 강도의 큰 변산이 특징이었다. 이는 이전 연구에서 "두려운" 정서의 특징인 타이밍의 큰 변산과 함께, "두려운" 정서가 '불규칙적이거나 변화가 커서 예측하기 어려운' 속성을 지니고 있음을 시사한다. 또한 "다정한" 정서에 대해서 본 연구에서는 다른 모든 정서와 유의미한 차이를 보인 반면, 이전 연구에서는 "슬픈"과 유의미한 차이가 없었다. 이는 본 연구에 쓰인 "다정한" 정서의 곡은 리듬 패턴을 다른 정서 버전과는 다르게 보사노바 리듬을 사용하였다. 이전 연구와는 다르게 빠른 템포였음에도 불구하고 구별이 잘 된 이유는 이와 같이 장르 특징적인 영향이 컸기 때문이라고 할 수 있다. 이는 연주자나 음악 스타일 자체의 성격이 정서 판단에 있어 큰 영향을 준다는 사실을 시사한다. 종합적으로 음악을 통한 정서 전달에 있어 연주자, 청자, 악기, 음악 스타일의 차이가 영향을 줄 수 있다는 사실을 확인하였으며 이러한 결과는 Scherer & Oshinsky(1977)가 언급하였듯 음악 연주가 다른 비언어적 의사소통 방법과 공유하는 특징이 있음을 시사한다.
본 논문에서는 multi-feature clustering(MFC) 방법을 이용한 강인한 내용 기반 음악 장르 분류 알고리즘을 제안한다. 기존 연구와 비교하여 본 논문에서는 입력 질의 패턴(또는 구간)과 입력 질의 길이의 변화에 따라 나타나는 불안정한 시스템 성능을 개선하는데 노력하였고, k-means clustering 기법에 기반한 multi-feature clustering(MFC)이라는 새로운 알고리즘을 제안하였다. 제안된 시스템의 성능을 검증하기 위해 질의 음악 파일의 서로 다른 여러 구간에서 질의 길이를 다변화하여 음악 특징 계수를 추출하였고, MFC 방법을 사용한 시스템과 MFC 방법을 사용하지 않은 시스템에 대한 장르 분류 성공률을 비교하여 제안 알고리즘의 성능을 비교${\cdot}$분석하였다. 모의실험 결과 MFC 방법을 사용한 시스템의 장르 분류 성공률이 높게 나타났고, 시스템의 안정성 역시 높게 나타났다.
음악 장르 분류 분야에서는 다양한 특징을 모아서 특징 벡터를 만들고 이를 support vector machine (SVM)와 같은 분류기에 입력하는 시스템이 주로 사용되고 있다. 이 논문에서는 거리 함수 학습를 음악 장르 분류를 위한 특징 벡터의 간소화에 적용하였다. 여러 거리 함수 학습 방법 중 하나의 방법을 선택하고, 기존의 논문들에서 사용되었던 특징 셋을 활용하여 기존 특징 셋에 대해서 성능을 떨어뜨리지 않으면서 특징 셋의 길이를 줄일 수 있는지 살펴본다. 우리의 실험에서는 168차원의 특징 셋을 10차원까지 줄였는데, 이 경우 분류 정확도가 2% 이내로 저하되었다.
본 논문에서는 인간의 청각 기관을 모델링 한 스파이크그램 (spikegram)을 이용한 심층 신경망 기반의 음악 장르 분류 기술을 제안한다. 분류 대상은 GTZAN 데이터 세트의 10개 장르로 정의한다. 본 논문에서는 청각 기관의 인식 방법을 모델링한 방법을 이용하여 스파이크그램을 구하고, 스파이크그램에서 새로운 특성 벡터를 추출하는 방법을 제안한다. 제안하는 방법을 통해 심층 신경망에 적합한 특성 벡터를 구하고 이렇게 구한 특성 벡터로 신경망을 학습시켜 기존에 사용하던 다양한 방법들보다 높은 성능을 얻을 수 있다.
음악 장르 분류 분야에서는 다양한 특징을 모아서 사용하는 방법과 support vector machine (SVM) 분류기가 주로 사용되고 있다. 이 논문에서는 거리 함수 학습를 음악 장르 분류에 적용하여 성능 향상을 꾀한다. 여러 거리 함수 학습 방법 중 하나의 방법을 선택하고, 일반적으로 많이 사용되는 특징 셋을 활용하여 다양한 특징 셋에 대해서 적용하였을 때, 실제 성능 향상이 있는지를 알아본다. 세 종류의 특징 셋을 사용하여 실험한 결과 두 가지 특징이 같이 있는 특징 셋에 대해서만 성능 향상이 있었으며, SVM보다 높은 성능을 보이지 못 했다.
음악은 사람의 감성, 감정에 영향을 끼치며, 최근 음악의 정서적인 힘은 여러 분야에 응용되고 있다. 특히, 음악을 듣는 것뿐만 아니라 시각적으로 가시화하여 여러 분위기를 연출할 수 있다. 본 논문에서는 음악과 조명을 연계하여 사람과의 상호작용을 위한 감성 제어 시스템을 제안한다. 기존의 FT(Fourier Transform)는 시간에 대한 정보를 가지고 있지 않기 때문에 시간에 따라 주파수 성분이 변하는 신호의 정보를 효율적으로 분석하기 어렵다. 이와 같은 문제점을 해결하기 위해 음악 신호 분석은 STFT(Short Time Fourier Transform)을 사용하였고, 세 가지의 장르로 음악을 분류하여 장르에 따른 주파수 특성을 비교해 보았으며, 분석된 범위내의 주파수 성분을 바탕으로 컬러 LED조명의 색상과 밝기 제어를 하였다. 기존의 음악을 이용한 LED조명 제어 연구와 다르게 감성적인 조명의 색 제어와 음악 신호의 변화량을 이용하여 밝기 제어를 하였으며, 제안된 조명 제어 방식은 감성 조명뿐만 아니라 여러 산업분야로 활용 될 수 있을 것이다.
<노다메 칸타빌레>는 클래식 음악을 다룬 장르만화이다. 만화가 니노미야 도모코에 의해 2001년부터 연재가 시작되어 2009년 10월까지 총 23권으로 출간된 이 작은 노다메 신드롬이라고 불릴 정도의 각광을 받아 왔다. 본 연구는 <노다메 칸타빌레>라는 음악 장르를 대상으로 한 만화에서 나타난 내러티브 구조의 특징을 기호학적 모델을 통해서 분석함을 목적으로 한다. 내러티브 구조는 먼저 그레마스가 제시한 세 가지의 시련과정을 통해서 이야기의 흐름이 어떻게 주어져 있는 지를 분석하고자 한다. 그리고 행위자 모델과 기호학적 사각형 모델을 적용하여 이야기 구성의 행위자들이 어떻게 배치되어있는 지와 행위자들을 둘러싼 사회적 담론의 의미 구조가 어떻게 생성되어있는 지를 고찰하고자 한다. 분석에 따르면, 만화에서 클래식 음악에 대한 사회적 담론으로 채택된 것은 천부적 재능과 도제식 교육방식의 관계이다. <노다메 칸타빌레>는 천부적 재능의 발현을 가로막는 대립 항으로 도제식 교육을 설정하는 것으로 나타났다. 이는 현실 세계를 주도하는 음악 교육의 방식에 대한 비판적 견해라고 할 수 있다.
최근 음악을 장르로 분류하는 다양한 연구가 진행되고 있다. 하지만 이러한 분류는 전문가들 마다 분류하는 기준이 서로 상이하여 정확한 결과를 도출하기가 쉽지 않다. 또한 새로운 장르 출현 시, 새롭게 정의해야하는 번거로움이 발생한다. 따라서 음악을 장르로 구분하기 보다는 감정단어들로 분류, 검색하여야 한다. 본 논문에서는 사람이 느끼는 감정 중, 밝음과 어두움을 기준으로 음악을 분류하려고 한다. 음악이 내포하고 있는 특성들에 VCM(Variance Considered Machines)을 적용하여 음악의 명암 분류 시스템을 제안한다. 본 논문에서 이용한 음악적 특성은 3가지이다. 설문조사를 통해 명암이 정의된 기준 음악을 음의 높고 낮음의 분포, 음색의 가늘고 굵음과 비트의 빠르기를 이용하여 VCM에 먼저 학습을 시킨 후, 학습된 VCM을 통하여 분류 되지 않은 음악을 정의하여 설문조사를 통한 결과와 비교 분석 하였다. 음 추출은 Matlab을 이용하여 샘플링된 음악을 일정한 간격으로 나누어 FFT를 통해 주파수 분석을 한 후 평균값을 그 구간의 대표음이라 가정하고 추출된 음들의 높낮이를 수치화 하여 전체 분포를 파악하였다. 음색 부분에서는 음 추출에서 사용된 주파수 영역에서 전체 주파수 누적분포의 차이를 이용하여 수치화 하였다. 이 세 가지 특성을 VCM에 적용하여 실험 결과와 설문 조사 결과 비교하여 보니 약 95.4%의 확률로 음악의 명암이 분리된 것을 확인 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.