• 제목/요약/키워드: 음소 인식

검색결과 302건 처리시간 0.022초

잡음환경 및 어휘독립 환경에서의 가변어휘 음성인식기의 성능 분석 (Performance Evaluation of the Variable Vocabulary Speech Recognition System in the Noisy and Vocabulary-Independent Environments)

  • 이승훈
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.56-59
    • /
    • 1998
  • POW 3848 DB 및 SNR 이 크게 다른 2 종류의 PC168 DB를 대상으로 가변어휘 음성인식 시스템을 이용하여 훈련 및 성능 평가 실험을 수행한 내용에 대해서 기술하고 있다. 실험의 목적은 위의 3종류의 DB를 조합하여 얻은 DB 환경하에서 인식기를 훈련시키면서, DB 의 조합 및 훈련방법에 따른 인식기의 성능과의 상관관계를 도출하고자 하였다. DB 의 조합은 POW DB 와 SNR 이 높은 PC DB , 및 3종류의 DB 모두로 구성하였다. 인식기는 40개의 음소로 구성된 문맥 독립형 SCHMM 모델이며, 각 음소당 3개의 상태로 이루어져 있다. 실험 결과, 대부분의 경우에서 ITERATION이 1.0인 경우에 최고 인식률을 나타내고 있으며, INTERATION 이 3.0 이상인 경우에는 항상 CASE 3의 실험방법이 우세한 결과를 나타내었다. 또한 CASE 1으로 훈련한 경우가 CASE 2 보다는 각각의 실험 DB 에 대해서 대체적으로 좋은 결과를 보였다.

  • PDF

확률 발음사전을 이용한 대어휘 연속음성인식 (Large Vocabulary Continuous Speech Recognition using Stochastic Pronunciatioin Lexicon Modeling)

  • 윤성진
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.315-319
    • /
    • 1998
  • 대어휘 연속음성인식을 위한 확률 발음사전 모델에 대해서 제안하였다. 제안된 확률 발음 사전은 연속음성과 같은 자연스런 발성에서 자주 발생되는 단어의 변이를 확률적인 subword-state로 이루어진 HMM으로 모델화 함으로써 단어의 발음 변이를 효과적으로 표현할 수 있으며, 단위 인식 시스템의 성능을 보다 높일 수 있도록 구성되었다. 확률 발음사전의 생성은 음성 자료와 음소 모델을 이용하여 단어 단위의 분할과 학습을 통해서 자동으로 생성되게 됨 음소와 같은 언어학적인 단위뿐만 아니라 PLU 이나 비언어학적인 인식 모델을 이용한 연속음성인식기에도 적용이 가능하다.연속음성인식실험결과 확률 발음사전을 사용함으로써 표준 발음 표기를 사용하는 인식 시스템에 비해 단어 오류율은 39.8%, 문장 오류율은 24.4%의 큰 폭으로 오류율을 감소시킬 수 있었다.

  • PDF

문장 거부를 위한 음소기반 인식 네트워크에서의 필러 모델 비율과 단어 검출률의 성능비교 (Performance Comparison of Filler Models and Word Spotting Ratio for Sentence Rejection in Phoneme-based Recognition Networks)

  • 김형태;이병혁;하진영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.856-858
    • /
    • 2005
  • 음성인식 시스템에서 입력된 음성 데이터에 대해 비인식 대상을 거부하는 기능은 신뢰도 보장 측면에 있어서 상당히 중요하며, 신뢰도를 높이기 위해서는 단순한 인식기능 외에 부적절한 입력 패턴의 거부 기능이 필요하다. 본 논문에서는 이러한 신뢰성 문제를 해결하기 위하여 음소기반 인식 네트워크에서 필러 모델 방법과 단어 검출률 방법을 사용하여 실험하였고, 문장의 단어 수에 따른 두 방법의 문장 거부 성능을 FAR과 FRR의 평균을 최소화 하는 값을 각각 구함으로써 비교${\cdot}$분석 하였다. 그 결과 필러모델 방법이 좀 더 나은 거부 성능을 보였고, 단어 검출률을 이용하는 방법이 인식 네트워크를 전부 거치지 않아도 되므로 실행속도와 메모리 절약에서 효과적이었다.

  • PDF

반음소 모델링을 이용한 거절기능에 대한 연구 (A Study on the Rejection Capability Based on Anti-phone Modeling)

  • 김우성;구명완
    • 한국음향학회지
    • /
    • 제18권3호
    • /
    • pp.3-9
    • /
    • 1999
  • 본 논문에서는 독립단어 음성인식 시스템을 위하여 반음소(anti-phone) 모델링을 이용한 인식 거절(rejection)기능에 대해 기술한다. 음성인식 거절 기능은 음성인식기를 제작할 ? 정해놓은 인식대상 단어 이외의 단어가 입력되었을 때 그 단어가 인식할 수 없는 단어임을 알려주는 기능이다. 음성인식 거절기능을 구하는 방식은 핵심어 검출(keyword spotting)방식과 발화검증(utterance verification)방식으로 구분된다. 핵심어 검출 방식은 인식 대상 단어 외의 단어를 별도로 모델링하여 하나의 인식대상 단어처럼 사용하는 방식이고, 발화검증 방식은 각 음소마다 그와 유사한 anti-model을 작성한 후 정상적인 음소 모델과 anti-model과의 유사도를 비교하여 결정하는 방식이다. 본 연구에서는 독립단어 음성인식 시스템에 적용될 수 있는 발화 검증 방식에 의해 음성인식 거절 기능을 구현하였다. 특히 유사도를 결정함에 있어서 산술평균, 기하평균, 조화평균을 사용하고 각각을 비교하여, 기하평균을 사용하는 방식이 우수한 성능을 보임을 알 수 있었다. 음성의 신뢰도(confidence score)를 정규화하기 위해서 Sigmoid 함수를 사용하는데 이 함수의 가중치(weight) 상수의 변화에 대해 인식률을 비교함으로써 가장 적절한 가중치 상수값을 결정하였다. 그리고 유사음소집합(cohort set)에 대한 실험에서는 유사음소집합의 크기가 클수록 더 좋은 성능을 보이는 결과를 얻었다. 음성인식 테스트 결과에서는 신뢰도 임계치 값을 구하고 이 값을 사용하여 인식률을 계산하였으며, 거절의 오류까지 포함된 음성인식률은 약 76%였다. 이 연구결과는 현재 한국통신에서 시험 서비스 중인 음성인식 증권정보 안내 시스템에 적용될 예정이다.

  • PDF

부호패턴에 의한 음성표현과 인식방법 (A Speech Representation and Recognition Method using Sign Patterns)

  • 김영화;김운일;이희정;박병철
    • 한국음향학회지
    • /
    • 제8권5호
    • /
    • pp.86-94
    • /
    • 1989
  • 본 논문에서는 새로운 음성표현 방법의 하나로 멜켑스트럼 계수에 대한 부호패턴(+,-)을 이용하는 방법을 제안한다. 부호패턴은 보음이나 비음과 같이 정상성이 강한 음성신호에 대해서 비교적 안정된 형태를 얻을 수 있으며, 음운성을 크게 손상시키지 않고 화자간 개인차를 흡수할 수 있다. 본 논문에서는 이러한 부호패턴을 이용하여 한국어 음소를 표현함으로써 음소모델의 작성과 음소의 인식절차를 크게 감소시킬 수 있음을 보인다.

  • PDF

1500 단어 실시간 화자 독립 음성인식 시스템 (Realtime Speaker Independent Speech Recognition System of 1500 Words)

  • 이강성
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 하계학술발표대회 논문집 제19권 1호
    • /
    • pp.15-18
    • /
    • 2000
  • 본 논문은 중규모 어휘인 1500여 단어 실시간 화자 독립 단독어 음성인식 시스템에 대해서 기술한다. 음향 모델은 HMM을 이용하였으며, 음소 모델은 문맥종속 모델인 트라이폰을 사용하였다. 이 시스템은 텍스트로부터 쉽게 사전을 구성할 수 있는 유연성을 갖는다. 선정된 단어는 주식시장에 상장되어 있는 1456개의 회사명으로 비교적 혼동하기 쉬운 단어들을 많이 포함한 사전이다. 실시간 처리를 위한 알고리즘들 중 인식율을 크게 저하시킬 가능성이 있는 기법들은 제외하였다. 여기에 트리 빔과 음소 빔을 적용하면서 topN을 적용하였으며 새로운 스코아 캐쉬 기법을 고안하였다. 특별히 스코아 캐쉬 기법은 인식율에는 전혀 영향을 미치지 않으면서 계산량을 $38\%$나 줄여주었다. 이런 기법들을 적용하여 실시간 음성인식을 구현할 수 있었다. Intel 450M CPU가 장착되어 있는 리눅스 시스템에서 평균 1.98초의 응답 시간을 보였다.

  • PDF

음성 인식에서 훈련 및 인식 과정에 사용되는 대상 어휘의 차이에 대한 음향 모델의 성능 평가 (Performance Evaluation of Acoustic Models According to Differences between Vocabularies in Training and Test Phases of Speech Recognition)

  • 김회린;이항섭;권오욱
    • 한국음향학회지
    • /
    • 제17권7호
    • /
    • pp.22-27
    • /
    • 1998
  • 본 논문에서는 ETRI에서 개발한 가변 어휘 음성 인식기의 어휘 독립 음향 모델링 방법을 기술하고, 이 모델의 어휘 종속, 어휘 독립 및 어휘적응 성능을 평가하기 위하여 다 양한 고립단어 및 연속음성 DB에 대하여 실험한 결과를 분석하였다. 평가를 위하여 사용한 음성 DB로는 고립단어 음성으로 POW(Phonetically Optimized Words) 3848, PBW(Phonetically Balanced Words) 445, PBW 452, 호텔예약 244 단어, 게임 제어용 단어 등이며, 연속음성으로 일반 문장 음성 및 연속 숫자음을 이용하였다. 성능 분석 결과 40개 음소 모델만으로도 비교적 높은 인식률을 보여 주었지만, 어휘독립의 경우는 어휘종속에 비 하여 성능이 크게 낮았고, 특히 대상 어휘가 숫자음, 알파벳, 연속음 등의 경우에는 POW 데이터나 PBW 데이터만 가지고는 우수한 가변 어휘 음성 인식기를 구현하기에 한계가 있 음을 알 수 있다. 또한, 훈련 데이터의 어휘와 평가데이터의 어휘가 비슷할 경우에는 변이음 모델을 사용하면 음소 모델만을 사용할 경우에 비하여 그 성능이 우수하였지만, 일반적인 어휘독립의 상황에서는 효과가 별로 없음을 알 수 있었다.

  • PDF

한국어 대어휘 음성DB를 이용한 HM-Net 음성인식 시스템의 성능평가 (Performance Evaluation of HM-Net Speech Recognition System using Korea Large Vocabulary Speech DB)

  • 오세진;김광동;노덕규;송민규;김범국;황철준;정현열
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2443-2446
    • /
    • 2003
  • 본 논문에서는 한국전자통신연구원에서 제공된 대어휘 음성DB를 이용하여 HM-Net(Hidden Markov Network) 음성인식 시스템의 성능평가를 수행하였다. 음향모델 작성은 음성인식에서 널리 사용되고 있는 통계적인 모델링 방법인 HMM(Hidden Markov Model)을 개량한 HM-Net을 도입하였다 HM-Net은 PDT-SSS 알고리즘에 의해 문맥방향과 시간방향의 상태분할을 수행하여 생성되는데, 특히 문맥방향 상태분할의 경우 학습 음성데이터에 출현하지 않는 문맥정보를 효과적으로 표현하기 위해 음소결정트리를 채용하고 있으며, 시간방향 상태분할의 경우 학습 음성데이터에서 각 음소별 지속시간 정보를 효과적으로 표현하기 위한 상태분할을 수행한다. 이러한 상태분할을 수행하여 파라미터를 공유하게 되며 최적인 모델 네트워크를 작성하게 된다. 대어휘 음성데이터를 이용하여 음향모델을 작성하고 인식실험을 수행한 결과, 100명의 100단어와 60문장에 대해 평균 97.5%, 96.7%의 인식률을 보였다.

  • PDF

음절 복원 알고리즘을 이용한 핵심어 오류 보정 시스템 (Key-word Error Correction System using Syllable Restoration Algorithm)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권10호
    • /
    • pp.165-172
    • /
    • 2010
  • 어휘 인식 시스템의 오류 보정방법으로는 오류 패턴매칭 기반 방법과 어휘의미 패턴 기반방법이있으며, 이들 방법에서는 오류 보정을 위해 핵심어를 의미적으로 분석하지 못하는 문제점을 가지고 있다. 이를 개선하기 위해 본 논문에서는 음절 복원 알고리즘을 이용한 핵심어 오류 보정 시스템을 제안한다. 인식된 음소 열을 의미 분석 과정을 거쳐 음소가 갖는 의미를 파악하고 음절 복원 알고리즘을 통해 음운 변동이 적용되기 이전의 문자열로 복원하므로 핵심어를 명확히 분석하고 오인식을 줄일 수 있다. 시스템 분석을 위해 음소 유사율과 신뢰도를 이용하여 오류 보정율을 구하였으며, 어휘 인식 과정에서 오류로 판명된 어휘에 대하여 오류 보정을 수행하였다. 에러 패턴 학습을 이용한 방법과 오류 패턴 매칭 기반 방법, 어휘 의미 패턴 기반 방법의 성능 평가 결과 3.0%의 인식 향상율을 보였다.

결정트리 상태 클러스터링에 의한 HM-Net 구조결정 알고리즘을 이용한 음성인식에 관한 연구 (A Study on Speech Recognition Using the HM-Net Topology Design Algorithm Based on Decision Tree State-clustering)

  • 정현열;정호열;오세진;황철준;김범국
    • 한국음향학회지
    • /
    • 제21권2호
    • /
    • pp.199-210
    • /
    • 2002
  • 본 논문은 한국어 음성인식에서 음향모델의 성능개선을 위한 기초적 연구로서 결정트리 상태 클러스터링에 의한 HM-Net (Hidden Markov Network)의 구조결정 알고리즘을 이용한 음성인식에 관한 연구를 수행하였다. 한국어는 다른 언어와 비교하여 많은 문법과 변이음이 존재하는데, 국어 음성학에서 정의한 다양한 변이음을 조사하고, 음소결정트리를 위한 음소 질의어 집합을 작성하였다. 본 논문의 HM-Net 구조결정 알고리즘의 아이디어는 SSS (Successive State Splitting) 알고리즘의 구조를 가지면서 미리 작성해 둔 문맥의존 음향모델의 상태를 다시 분할하는 방법이다. 즉, 모델의 각 상태위치마다 음소 질의어 집합에 의해 음소결정트리를 생성하고, PDT-SSS (Phonetic Decision Tree-based SSS) 알고리즘에 의해 문맥의존 음향모델의 상태열을 다시 학습하는 방법이다. 결정트리 상태 클러스터링에 의한 HM-Net 구조결정 알고리즘의 유효성을 확인하기 위해, 국어공학센터 (KLE)의 452단어와 항공편 예약에 관련된 YNU200 문장을 대상으로 음성인식 실험을 수행하였다. 인식실험 결과, 음소, 단어, 연속음성인식 실험에서 상태분할을 수행한 후 상태수의 변화에 따라 인식률이 점진적으로 향상됨을 확인하였다. 상태수 2,000일 때 음소, 단어 인식률이 평균 71.5%, 99.2%를 각각 얻었으며, 연속음성인식률은 상태수 800일 때 평균 91.6%를 얻었다. 또한 HM-Net 구조결정 알고리즘의 파라미터 공유관계를 비교하기 위해 상태공유를 수행하는 HTK를 이용한 단어인식 실험을 수행하였다. 실험결과, HTK를 이용한 문맥의존 음향모델에 비해 평균 4.0%의 인식률 향상을 보여, 본 논문에서 적용한 결정트리 상태 클러스터링에 의한 HM-Net 구조결정 알고리즘의 유효성을 확인하였다.