Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.592-594
/
2001
본 연구에서는 음성인식에 있어서 음향모델의 고정도화를 위해 통계적 방법인 HMM과 시간동기형 Viterbi 알고리즘을 기반으로 한 세그멘트되지 않은 음성의 자동 세그멘테이션에 관한 연구를 수행하였다. 본 연구에서는 소량의 세그멘트된 음성에 대해 연속분포형 HMM 기본모델을 작성한 후 이를 표준패턴으로 사용하고, 세그멘트되지 않은 입력음성의 특징 피라미터에 대해 시간동기형 Viterbi 알고리즘의 프레임마다 최대가 되는 지점을 최적경계로 설정하고, 앞에서 구현 최적 경계 정보와 언어학적 지식인 발음사전 정보를 이용하여 음성을 세그멘테이션 하는 것이다. 본 연구와의 비교를 위해 HTK를 이용하여 위와 동일한 과정을 수행하였다. 이렇게 구한 음성의 세그멘테이션 정보를 이용하여 연속분포형 HMM 기본모델과 HTK의 CHMM 기본모델을 각각 작성한 후, 국어공학센터(KLE) 단어 데이터에 대해 단어인식 성능을 평가하였다. 실험결과, KLE 452 남성과 여성에 대해, 본 연구실 인식 시스템은 화자독립 단어인식률 89.4%, 85.1%, HTK의 화자독립 단어인식률 85.1%, 81.9%를 각각 얻었다.
상용 가능한 대규모 음성인식 시스템의 개발을 위해서는 음성 데이터베이스 구축이 중요한 과제의 하나로써, 많은 시간과 노력이 요구되며 특히 세그멘테이션과 라벨링은 그 노력의 상당부분이 된다. 본 논문은 ARS 주식 거래 시스템에서 사용되는 대용량 음성 DB의 효과적 구축을 위해 세그멘테이션 및 라벨링의 자동화에 대한 연구를 하였다. 본 연구를 위해 20대 성인 남녀를 대상으로 증권거래와 관련한 15개의 문장을 발성하도록 하였으며 Dialogic사의 D/41ESC보드를 장착하고, Window NT4.0 플렛폼에서 음성을 수집하였다. 또한 자동 Segmentation과 labeling은 Aligner를 사용하였으며 수동과 비교하기 위해 CSLU speech Tool Kit을 사용하였고 수작업은 숙련도가 있는 전문가가 하도록 하였다.
In this paper, we propose an algorithm for the frequency channel segmentation using peaks and valleys in spectrogram. The frequency channel segments means that local groups of channels in frequency domain that could be arisen from the same sound source. The proposed algorithm is based on the smoothed spectrum of the input sound. Peaks and valleys in the smoothed spectrum are used to determine centers and boundaries of segments, respectively. To evaluate a suitableness of the proposed segmentation algorithm before that the grouping stage is applied, we compare the synthesized results using ideal mask with that of proposed algorithm. Simulations are performed with mixed speech signals with narrow band noises, wide band noises and other speech signals.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.77-80
/
2004
원화자로부터 목표 화자의 음성으로 변환을 위해서는 음운 및 피치변환이 이루어져야 한다. 원 음성과 목표 음성 신호 사이에 따른 발성길이, 크기 및 피치 등의 운율 특성은 화자의 개인성 및 발성문장의 의도를 나타내는 주요 역할을 한다. 본 논문에서는 음성 변환을 수행하기 위하여 발성된 음성의 강세구(phrase)단위의 피치 검출을 통하여 템플릿을 추출하는 방법을 제안한다. 우선 한국어의 운율구에 대한 정보가 필요한 것인지, 한국어는 어떤 운율 구조를 갖는지에 대하여 알아본다. 마지막으로 어떻게 연속음성으로부터 한국어에 적당한 운율구 단위를 나눌 것인지, 즉 자동 세그멘테이션 및 레이블링에 대하여 분석한다. 또한 논문에서는 한국어 문장음성의 운율구를 강세구와 억양구로 나누고 육안으로 표시한 운율구 단위를 기준으로 이 운율구 단위에 적합한 특징을 추출하여 패턴을 작성한다.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.91-94
/
2000
최근 운율 구조와 문장구조 및 음운규칙과 관련 된 많은 언어학적 연구가 이루어져, 언어 이해 차원에서 의미 정보, 문장 구조 정보, discourse structure 등을 위한 운율 정보의 유용성이 입증되었으나, 이러한 결과가 최근의 음성인식 시스템에는 거의 적용되지 못하고 있다. 본 연구에서는 계층적인 방법을 기초로 하여 한국어의 연속음성으로부터 운율구를 검출하는 세그멘테이션법을 제안하였다. 우선, 입력된 음성으로부터 문장단위의 경계를 검출하기 위하여 휴지기를 이용하였으며 에너지, 휴지기의 지속시간 및 피치궤적을 참조하여 강세구의 경계를 검출하였다. 실험음성의 텍스트는 "만물상"이며, 남녀 각 2명의 표준어 화자가 빠른 속도와 보통 속도로 낭독한 음성데이터를 대상으로 비교하였다.
In speech corpus generation and speech recognition, it is sometimes needed to segment the input speech data without any prior knowledge. A method to accomplish this kind of segmentation, often called as blind segmentation, or acoustic segmentation, is to find boundaries which minimize the Euclidean distances among the feature vectors of each segments. However, the use of this metric alone is prone to errors because of the fluctuations or variations of the feature vectors within a segment. In this paper, we introduce the principal component analysis method to take the trend of feature vectors into consideration, so that the proposed distance measure be the distance between feature vectors and their projected points on the principal components. The proposed distance measure is applied in the LBDP(level building dynamic programming) algorithm for an experimentation of continuous speech segmentation. The result was rather promising, resulting in 3-6% reduction in deletion rate compared to the pure Euclidean measure.
This paper proposes a syllabic segmentation method for the korean continuous speech. This method are formed three major steps as follows. (1) labeling the vowel, consonants, silence units and forming the Token the sequence of speech data using the segmental parameter in the time domain, pitch, energy, ZCR and PVR. (2) scanning the Token in the structure of korean syllable using the parser designed by the finite state automata, and (3) re-segmenting the syllable parts witch have two or more syllables using the pseudo-syllable nucleus information. Experimental results for the capability evaluation toward the proposed method regarding to the continuous words and sentence units are 73.5%, 85.9%, respectively.
Music is now digitally produced and distributed via internet and we face a huge amount of music day by day. A music summarization technology has been studied in order to help people concentrate on the most impressive section of the song andone can skim a song as listening the climax(chorus, refrain) only. Recent studies try to find the climax section using various methods such as finding diagonal line segment or kernel based segmentation. All these methods fail to capture the inherent structure of music due to polyphonic and noisy nature of music. In this paper, after applying moving average filter to time domain of MFCC/chroma feature, we achieved a remarkable result to capture the music structure.
Journal of the Korean Institute of Telematics and Electronics B
/
v.33B
no.1
/
pp.108-115
/
1996
This paper proposes an algorithm and a model topology for the connected speech recognition using Discrete Hidden Markov Models. A proposed model uses diphone and triphone model which consider the recognition rate and recognisable vocabulary. Considering more exact inter- phoneme segmentation and execution speed of algorithm, 4 states have to exist in diphone model where the first state and the last state are keeping a steady state, the other states hold a transient state. 7 states have to exist in triphone model where 7 states are specified and improved to 3 steady states and 4 transition states. Also, the proposed speech recognition algorithm is designed to detect the inter-phoneme segmentation during the recognition processing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.