• Title/Summary/Keyword: 음성신호 대역

Search Result 146, Processing Time 0.021 seconds

Design of a Fourth-Order Sigma-Delta Modulator Using Direct Feedback Method (직접 궤환 방식의 모델링을 이용한 4차 시그마-델타 변환기의 설계)

  • Lee, Bum-Ha;Choi, Pyung;Choi, Jun-Rim
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.39-47
    • /
    • 1998
  • A fourth-order $\Sigma$-$\Delta$ modulator is designed and implemented in 0.6 $\mu\textrm{m}$ CMOS technology. The modulator is verified by introducing nonlinear factors such as DC gain and slew rate in system model that determines the transfer function in S-domain and in time-domain. Dynamic range is more than 110 dB and the peak SM is 102.6 dB at a clock rate of 2.8224 MHz for voiceband signal. The structure of a ∑-$\Delta$ modulator is a modified fourth-order ∑-$\Delta$ modulator using direct feedback loop method, which improves performance and consumes less power. The transmission zero for noise is located in the first-second integrator loop, which reduces entire size of capacitors, reduces the active area of the chip, improves the performance, and reduces power dissipation. The system is stable because the output variation with respect to unit time is small compared with that of the third integrator. It is easy to implement because the size of the capacitor in the first integrator, and the size of the third integrator is small because we use the noise reduction technique. This paper represents a new design method by modeling that conceptually decides transfer function in S-domain and in Z-domain, determines the cutoff frequency of signal, maximizes signal power in each integrator, and decides optimal transmission-zero frequency for noise. The active area of the prototype chip is 5.25$\textrm{mm}^2$, and it dissipates 10 mW of power from a 5V supply.

  • PDF

Optimizing Wavelet in Noise Canceler by Deep Learning Based on DWT (DWT 기반 딥러닝 잡음소거기에서 웨이블릿 최적화)

  • Won-Seog Jeong;Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.113-118
    • /
    • 2024
  • In this paper, we propose an optimal wavelet in a system for canceling background noise of acoustic signals. This system performed Discrete Wavelet Transform(DWT) instead of the existing Short Time Fourier Transform(STFT) and then improved noise cancellation performance through a deep learning process. DWT functions as a multi-resolution band-pass filter and obtains transformation parameters by time-shifting the parent wavelet at each level and using several wavelets whose sizes are scaled. Here, the noise cancellation performance of several wavelets was tested to select the most suitable mother wavelet for analyzing the speech. In this study, to verify the performance of the noise cancellation system for various wavelets, a simulation program using Tensorflow and Keras libraries was created and simulation experiments were performed for the four most commonly used wavelets. As a result of the experiment, the case of using Haar or Daubechies wavelets showed the best noise cancellation performance, and the mean square error(MSE) was significantly improved compared to the case of using other wavelets.

Design of the Noise Suppressor Using the Perceptual Model and Wavelet Packet Transform (인지 모델과 웨이블릿 패킷 변환을 이용한 잡음 제거기 설계)

  • Kim, Mi-Seon;Park, Seo-Young;Kim, Young-Ju;Lee, In-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.7
    • /
    • pp.325-332
    • /
    • 2006
  • In this paper. we Propose the noise suppressor with the Perceptual model and wavelet packet transform. The objective is to enhance speech corrupted colored or non-stationary noise. If corrupted noise is colored. subband approach would be more efficient than whole band one. To avoid serious residual noise and speech distortion, we must adjust the Wavelet Coefficient Threshold (WCT). In this Paper. the subband is designed matching with the critical band and WCT is adapted noise masking threshold (NMT) and segmental signal to noise ratio (seg_SNR). Consequently. it has similar Performance with EVRC in PESQ-MOS. But it's better than wavelet packet transform using universal threshold about 0.289 in PESQ-MOS. The important thing is that it's more useful than EVRC in coded speech. In coded speech. PESQ-MOS is higher than EVRC about 0.23.

Optical Communication and Sensing Modules for Plastic Optical Fibers (고분자광섬유용 광통신 및 센서 모듈)

  • Park, Byung-Wook;Yoon, Do-Young;Kim, Dong-Shik
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.558-564
    • /
    • 2009
  • POF(Polymer optical fiber) offers advantages of lighter, inexpensive, and easier to use over GOF(glass optical fiber). Its higher transmission loss and low bandwidth, however, make it suitable only for short distance networking such as LAN. The polymer materials and its synthesis technology of low transmission loss and the broader application for flexible POF are the two of many critical areas to be investigated more. In the current study, low-noise POF modules are developed and optimized with a low noise amplifier and low cost LED of 650 nm. In order to demonstrate the dynamic characteristics of the POF module for optical communication and sensing, we have built an image transfer module, optical transmission speed measurement module, optical transceiver for RS-232, and sound-transfer module, and the signal characteristics of them are evaluated. It is found that the module can be readily used for a quick and simple measurement of optical transfer speed. With help of analog amplifier, LED, and PD, sound and image transfers through a maximum 60 m optical waveguide have been confirmed. Real-time data transfer was also demonstrated in PID control, which is thought to be valuable to industrial plant design and control.

Investigation of the sound insulation performance of walls and flanking noises in classrooms using field measurements (현장실험을 통한 학교교실의 벽체 차음성능 및 측로전달소음 조사)

  • Ryu, Da-Jung;Park, Chan-Jae;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.329-337
    • /
    • 2017
  • In USA and UK, the standards of both reverberation time and background noise level have been established for the appropriate aural environment in classrooms. In order to realize this, guidelines for architectural planning and interior finishing have been also suggested. However, in Korea, there has hardly been any guidelines for satisfying background noise criteria and investigation about sound insulation performance of current walls of classrooms. The present study investigates the structure of outer wall and walls between classrooms of two middle schools in order to analyze the sound insulation performance against both exterior and interior noises. Acoustic parameters including transmission loss, standardized sound level difference, and signal to noise ratio have been measured and analyzed for sound insulation performance of walls and flanking noises. As a result, concerning the walls in between classrooms, it was found that walls of dry construction have greater sound insulation performance rather than the walls of wet construction especially in mid and high frequency bands. Also, It was revealed that thermopane, insulated pair glass, of outer walls, has greater sound insulation performance than the double window consisted of two single pane glass. Regarding flanking noises, the standards were exceeded when all windows, or windows and doors front onto corridor were opened. It denotes that students could be disturbed with the sound transmission by the interior noises.

Comparing Quantitative EEG and Low Resolution Electromagnetic Tomography Imaging between Deficit Syndrome and Non-Deficit Syndrome of Schizophrenia (정신분열병의 결핍증후군과 비결핍증후군에서 QEEG와 sLORETA를 이용한 비교연구)

  • Lee, Sang-Eun;Yim, Seon-Jin;Lee, Mi-Gyung;Lee, Jae-Won;Han, Kyu-Hee;Lee, Jong-Il;Sim, Min-Young;Yoon, Hai-Joo;Shin, Byoung-Hak
    • Sleep Medicine and Psychophysiology
    • /
    • v.17 no.2
    • /
    • pp.91-99
    • /
    • 2010
  • Objectives: Deficit schizophrenia (DS) constitutes a disease separate from non-deficit schizophrenia (NDS). The aim of the current study was to compare the quantitative EEG and low resolution electromagnetic tomography (LORETA) imaging between DS and NDS. Methods: This study was performed by 32 channels EEG for 42 schizophrenia patients who we categorized into DS and NDS using proxy instrument deficit syndrome (PDS). We performed the absolute power spectral analyses for delta, theta, alpha, low beta and high beta activities. We compared power spectrum between two groups using Independent t-test. Partial correlation test was performed with clinical parameters. Standardized LORETA (sLORETA) was used for comparison of cortical activity, and statistical nonparametric mapping (SnPM) was applied for the statistical analysis. Results: DS showed significantly increased delta and theta absolute power in fontal and parietal region compared with NDS (p<0.05). Power spectrum showed significant correlation with 'anergia' and 'hostility/suspiciousness' subscale of brief psychiatric rating scale (BPRS)(p<0.05). sLORETA found out the source region (anterior cingulate cortex/limbic part) that delta activity was significantly increased in DS (p=0.042). Conclusions: DS showed different cortical activity compared with NDS. Our results may suggest QEEG and LORETA could be the marker in differentiating between DS and NDS.

  • PDF