본 논문에서는 잡음 환경에서 강인한 음성 인식을 위하여 음성 모델을 기반으로 하는 효과적인 특징 보상 기법을 제안한다. 제안하는 특징 보상 기법은 병렬 결합된 혼합 모델 (PCMM)을 기반으로 한다. 기존의 PCMM 기반의 기법은 시간에 따라 변하는 잡음 환경을 반영하기 위하여 매 음성 입력마다 복잡한 과정의 혼합 모델 결합이 필요하다. 제안하는 기법에서는 다중의 혼합 모델을 보간하는 방법을 채용함으로써 시간에 따라 변하는 배경 잡음에 대응할 수 있다. 보다 신뢰성 있는 혼합 모델 생성을 위하여 데이터 유도 기반의 방법을 도입하고, 실시간 처리를 위하여 프레임에 동기화된 환경 사후 확률 예측 과정을 제안한다. 다중 모델로 인한 연산량 증가를 막기 위하여 혼합 모델을 공유하는 기법을 제안한다. 가우시안 혼합 모델 사이에 통계학적으로 유사한 요소들을 선택하여 공유에 필요한 공통 모델을 생성한다. Aurora 2.0 데이터베이스와 실제 자동차 주행 환경에서 수집된 음성 데이터베이스에 대한 성능 평가를 실시한다. 실험 결과로부터 제안한 기법이 모의 환경과 실제 잡음 환경에서 강인한 음성 인식 성능을 가져오고 연산량 감소에 효과적임을 확인한다.
주행 중 차량내의 음성인터페이스 에서 음성인식기의 성능은 가장 중요한 부분이다. 본 논문은 차량내 음성인식기의 성능 평가를 자동화하기 위한 플랫폼의 개발에 대한 것이다. 개발된 플랫폼은 주 프로그램, 중계 프로그램 데이터베이스 관리, 통계산출 모듈로 구성된다. 성능 평가에 있어 실제 차량의 주행 조건을 고려한 시뮬레이션 환경이 구축되었고, 미리 녹음된 주행 노이즈와 발화자의 목소리를 마이크를 통해 입력하여 실험하였다. 실험 결과 제안하는 플랫폼에서 얻어진 음성인식 결과의 유효성이 입증되었다. 제안한 플랫폼으로 사용자는 음성인식의 자동화와 인식결과의 효율적인 관리 및 통계산출을 함으로서 차량 음성인식기의 평가를 효과적으로 진행할 수 있다.
음성 다이얼링 시스템은 화자의 음성을 인식하여 원하는 전화번호로 자동으로 전화를 걸어주는 시스템으로 주로 이동 전화나 휴대형 통신 장비에 유용하게 사용된다. 개인 음성 다이얼링 시스템의 경우, 다이얼링에 사용되는 모든 구문은 사용자가 선택하고 사용자의 음성을 사용하여 학습되어 음성 인식을 위한 HMM을 생성한다. 이러한 시스템은 화자독립 시스템 보다 매우 적은 메모리 공간과 계산량으로 구현이 가능하다. 그러나 이러한 시스템은 학습시 각 단어당 2-3개의 음성만을 사용하므로 음성인식 시스템의 성능을 개선하기 위한 각 상태에서의 상태지속분포을 추정하기는 매우 어렵다. 따라서 본 논문에서는 성능개선을 위한 후처리기를 제안하였다. 전화선을 통하여 구성된 데이터베이스를 이용한 실험에서 제안된 후처리기가 인식 시스템의 성능을 향상시킴을 확인하였다.
본 논문에서는 인간의 감정 변화에 강인한 음성 인식 시스템을 구현하기 위하여 음성 변환 방법 중의 한가지인 주파수 와핑 방법을 사용한 연구를 수행하였다. 이러한 목표를 위하여 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정의 변화에 따라 음성의 스펙트럼이 변화한다는 것과 이러한 변화는 음성 인식 시스템의 성능을 저하시키는 원인 중의 하나임을 관찰하였다. 본 논문에서는 이러한 음성의 변화를 감소시키는 방법으로 주파수 와핑을 학습 과정에 사용하는 방법을 제안하여 감정 변화에 강인한 음성 인식 시스템을 구현하였고 성도 길이 정규화 방법을 사용한 방법과 성능을 비교하였다. HMM을 사용한 단독음 인식 실험에서 제안된 학습 방법은 사용하면 감정이 포함된 데이터에 대한 인식 오차가 기존 방법보다 감소되었다.
본 논문에서는 주파수 영역의 일부가 상대적으로 심하게 손상된 음성에 대한 음성 인식기의 성능을 향상시키기 위해 채널집중 멜 켑스트럼 특징추출법을 제안한다. 이 방법은 기존멜 켑스트럼 특징추출의 필터뱅크분석 단계에서 각 채널의 신뢰도를 구하고, 신뢰도가 높은 주파수 영역이 음성인식에 보다 중요하게 사용되도록 멜 켑스트럼 추출 및 HMM의 출력확률 계산식에 채널 가중을 도입한다. TIDIGITS 데이터베이스에 음성의 일부 주파수를 손상시키는 다양한 주파수 선택 잡음을 가산하여 인식 실험을 수행한 결과, 제안한 방법은 덜 손상된 주파수영역의 음성 정보를 효과적으로 활용하며, 주파수선택 잡음에 대해 우수하다고 알려진 다중대역 음성인식에 비해 평균 11.2%더 높은 성능을 얻었다.
감정을 포함하고 있는 음성은 청자로 하여금 화자의 심리상태를 파악할 수 있게 하는 요소 중에 하나이다. 음성신호에 포함되어 있는 감정을 인식하여 사람과 로봇과의 원활한 감성적 상호작용을 위하여 특징을 추출하고 감정을 분류한 방법을 제시한다. 음성신호로부터 음향정보 및 운율정보인 기본 특징들을 추출하고 이로부터 계산된 통계치를 갖는 특징벡터를 입력으로 support vector machine (SVM) 기반의 패턴분류기를 사용하여 6가지의 감정- 화남(angry), 지루함(bored), 기쁨(happy), 중립(neutral), 슬픔(sad) 그리고 놀람(surprised)으로 분류한다. SVM에 의한 인식실험을 한 경우 51.4%의 인식률을 보였고 사람의 판단에 의한 경우는 60.4%의 인식률을 보였다. 또한 화자가 판단한 감정 데이터베이스의 감정들을 다수의 청자가 판단한 감정 상태로 변경한 입력을 SVM에 의해서 감정을 분류한 결과가 51.2% 정확도로 감정인식하기 위해 사용한 기본 특징들이 유효함을 알 수 있다.
상용 가능한 대규모 음성인식 시스템의 개발을 위해서는 음성 데이터베이스 구축이 중요한 과제의 하나로써, 많은 시간과 노력이 요구되며 특히 세그멘테이션과 라벨링은 그 노력의 상당부분이 된다. 본 논문은 ARS 주식 거래 시스템에서 사용되는 대용량 음성 DB의 효과적 구축을 위해 세그멘테이션 및 라벨링의 자동화에 대한 연구를 하였다. 본 연구를 위해 20대 성인 남녀를 대상으로 증권거래와 관련한 15개의 문장을 발성하도록 하였으며 Dialogic사의 D/41ESC보드를 장착하고, Window NT4.0 플렛폼에서 음성을 수집하였다. 또한 자동 Segmentation과 labeling은 Aligner를 사용하였으며 수동과 비교하기 위해 CSLU speech Tool Kit을 사용하였고 수작업은 숙련도가 있는 전문가가 하도록 하였다.
본 논문은 어휘독립(Vocabulary-Independent) 환경에서 별도의 훈련과정 없이 인식대상 어휘를 추가 및 변경할 수 있는 가변어휘(Variable Vocabulary) 음성인식에 관한 연구를 다룬다. 가변어휘 인식은 처음에 대용량 음성 데이터베이스(DB)로 음소모델을 훈련하고 인식대상 어휘가 결정되면 발음사전에 의거하여 음소모델을 연결함으로써 별도의 훈련과정 없이 인식대상 어휘를 변경 및 추가할 수 있다. 문맥 종속형(Context-Dependent) 음소 모델인 triphone을 사용하여 인식실험을 하였고, 인식성능의 비교를 위해 어휘종속 모델을 별도로 구성하여 인식실험을 하였다. Unseen triphone 문제와 훈련 DB의 부족으로 인한 모델 파라메터의 신뢰성 저하를 방지하기 위해 state-tying 방법 중 음성학적 지식에 기반을 둔 tree-based clustering(TBC) 기법[1]을 도입하였다. Mel Frequency Cepstrum Coefficient(MFCC)와 대수에너지에 기반을 둔 3 가지 음성특징 벡터를 사용하여 인식 실험을 병행하였고, 연속 확률분포를 가지는 Hidden Markov Model(HMM) 기반의 고립단어 인식시스템을 구현하였다. 인식 실험에는 22 개 부서명 DB[3]를 사용하였다. 실험결과 어휘독립 환경에서 최고 98.4%의 인식률이 얻어졌으며, 어휘종속 환경에서의 인식률 99.7%에 근접한 성능을 보였다.
본 논문에서는 음성의 모델을 이용하여 확률적인 기반으로 잡음의 마스킹 정도를 측정하는 방법에 대해서 제시한다. 잡음의 마스킹 정도를 측정하는 기준으로서 '잡음 마스킹 확률'을 구하는 방법에 대해서 설명하고 이의 특성에 대해서 알아본다. 그리고 잡음에 대한 '잡음 마스킹 확률'을 이용하여 잡음 환경에서의 음성인식 특징벡터의 성능 향상에 대해 적용해 보았다. 제안된 방법은 ETSI 에서 음성인식 표준실험으로 제시한 Aurora2 데이터베이스 상에서 실험해 보았다. 그 결과 기존의 알고리즘에 비해 16.58%의 성능 향상을 이루어 낼 수 있었다.
본 논문에서는 WPD (Wavelet Packet Decomposition) 계수에 Teager 에너지를 적용한 특징 계수를 임계값 알고리듬에 적용하여 잡음에 강인한 VAD 알고리듬을 제안하였다. 임계값은 비음성 구간의 평균과 표준편차를 추산하여 설정하였다. TIMIT 음성과 NOISEX 잡음 데이터베이스를 사용한 실험 결과, 제안된 알고리듬이 기존의 대표적인 비교 대상 알고리듬보다 우수함을 보였다. 정확도는 SNR 10 dB부터 -10 dB까지 ROC (Receiver Operating Characteristics) 곡선을 사용하여 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.