In this paper, we propose a speech emotion recognition method using a deep neural network based on the attention mechanism. The proposed method consists of a combination of CNN (Convolution Neural Networks), GRU (Gated Recurrent Unit), DNN (Deep Neural Networks) and attention mechanism. The spectrogram of the speech signal contains characteristic patterns according to the emotion. Therefore, we modeled characteristic patterns according to the emotion by applying the tuned Gabor filters as convolutional filter of typical CNN. In addition, we applied the attention mechanism with CNN and FC (Fully-Connected) layer to obtain the attention weight by considering context information of extracted features and used it for emotion recognition. To verify the proposed method, we conducted emotion recognition experiments on six emotions. The experimental results show that the proposed method achieves higher performance in speech emotion recognition than the conventional methods.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2001.12a
/
pp.199-202
/
2001
일반적으로 음성신호로부터 사람의 감정을 인식할 수 있는 요소는 (1)대화의 내용에 사용한 단어, (2)톤 (Tone), (3)음성신호의 피치(Pitch), (4)포만트 주파수(Formant Frequency), 그리고 (5)말의 빠르기(Speech Speed) (6)음질(Voice Quality) 등이다. 사람의 경우는 주파수 같은 분석요소 보다는 론과 단어, 빠르기, 음질로 감정을 받아들이게 되는 것이 자연스러운 방법이므로 당연히 후자의 요소들이 감정을 분류하는데 중요한 인자로 쓰일 수 있다. 그리고, 종래는 주로 후자의 요소들을 이용하였는데, 기계로써 구현하기 위해서는 조금 더 공학적인 포만트 주파수를 사용할 수 있게 되는 것이 도움이 된다. 그러므로, 본 연구는 음성 신호로부터 피치와 포만트, 그리고 말의 빠르기 등을 이용하여 감성 인식시스템을 구현하는 것을 목표로 연구를 진행하고 있는데, 그 1단계 연구로서 본 논문에서는 화가 나서 내뱉는 알과 기쁠 때 간단하게 사용하는 말들을 기반으로 하여 극단적인 두 가지 감정의 독특한 특성을 찾아낸다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.11-14
/
2007
인간과 컴퓨터간의 상호교류 하는데 있어서 감정 인식은 필수라 하겠다. 그래서 본 논문에서는 음성 신호 및 얼굴 영상을 BL(Bayesian Learning)과 PCA(Principal Component Analysis)에 적용하여 5가지 감정 (Normal, Happy, Sad, Anger, Surprise) 으로 패턴 분류하였다. 그리고 각각 신호의 단점을 보완하고 인식률을 높이기 위해 결정 융합 방법과 특징 융합 방법을 이용하여 감정융합을 실행하였다. 결정 융합 방법은 각각 인식 시스템을 통해 얻어진 인식 결과 값을 퍼지 소속 함수에 적용하여 감정 융합하였으며, 특정 융합 방법은 SFS(Sequential Forward Selection)특정 선택 방법을 통해 우수한 특정들을 선택한 후 MLP(Multi Layer Perceptron) 기반 신경망(Neural Networks)에 적용하여 감정 융합을 실행하였다.
Kim, Sung-Ill;Lee, Sang-Hoon;Shin, Wee-Jae;Park, Nam-Chun
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.10a
/
pp.560-563
/
2004
본 논문은 분노, 행복, 평정, 슬픔, 놀람 둥과 같은 인간의 감정상태를 인식하는 새로운 접근에 대해 설명한다. 이러한 시도는 이산길이를 포함하는 연속 은닉 마르코프 모델(HMM)을 사용함으로써 이루어진다. 이를 위해, 우선 입력음성신호로부터 감정의 특징 파라메타를 정의 한다. 본 연구에서는 피치 신호, 에너지, 그리고 각각의 미분계수 등의 운율 파라메타를 사용하고, HMM으로 훈련과정을 거친다. 또한, 화자적응을 위해서 최대 사후확률(MAP) 추정에 기초한 감정 모델이 이용된다. 실험 결과, 음성에서의 감정 인식률은 적응 샘플수의 증가에 따라 점차적으로 증가함을 보여준다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.489-492
/
2002
최근 인간형 로봇에 대한 개발이 괄목할 만한 성장을 이루고 있고, 친근한 로봇의 개발에 중요한 역할을 담당하는 것으로써 감성/감정의 인식이 필수적이라는 인식이 확산되고 있다. 본 논문은 음성의 감정인식에 있어 가장 큰 부분을 차지하는 피치의 패턴을 인식하여 감정을 분류/인식하는 시뮬레이터의 개발과 실험결과를 나타낸다. 또한, 피치뿐 아니라 음향학적으로 날카로움, 낮음등의 요소를 분류의 기준으로 포함시켜서 좀더 신뢰성 있는 인식을 할 수 있음을 보인다. 시뮬레이터의 내부 구조로는 음성으로부터 피치를 추출하는 부분과 피치의 패턴을 학습시키는 DRNN 부분, 그리고, 음향적 특성을 추출하는 음향 추출부가 주요 요소로 이루어져 있다. 그리고, 피치를 추출하는 방법으로는 Center-Clipping 함수를 이용한 autocorrelation approach를 사용하고, 학습 시 최적의 개체를 찾는 방법으로써 (1+100)-ES를 사용한다.
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.1
/
pp.34-39
/
2009
As a subjective recognition effect, human's emotion has impulsive characteristic and it expresses intentions and needs unconsciously. These are pregnant with information of the context about the ubiquitous computing environment or intelligent robot systems users. Such indicators which can aware the user's emotion are facial image, voice signal, biological signal spectrum and so on. In this paper, we generate the each result of facial and voice emotion recognition by using facial image and voice for the increasing convenience and efficiency of the emotion recognition. Also, we extract the feature which is the best fit information based on image and sound to upgrade emotion recognition rate and implement Multi-Modal Emotion recognition system based on feature fusion. Eventually, we propose the possibility of the ubiquitous computing service reasoning method based on Bayesian Network and ubiquitous context scenario in the ubiquitous computing environment by using result of emotion recognition.
인간과 기계와의 인터페이스에 있어서 궁극적 목표는, 인간과 기계가 마치 사람과 사람이 대화하듯 자연스런 인터페이스가 이루어지도록 하는데 있다. 이에 본 논문에서는 사람의 음성속에 깃든 6개의 기본 감정을 인식하는 알고리듬을 제안하고자 한다. 이를 위하여 뛰어난 주파수 분해능력을 갖고 있는 웨이블렛 필터뱅크를 이용하여 음성을 여러 개의 서브밴드로 나누고 각 밴드에서 특징점을 추출하여 감정을 이식하고 이를 최종적으로 융합, 단일의 인식값을 내는 다중의사 결정 구조를 갖는 알고리듬을 제안하였다. 이를 적용하여 실제 음성 데이타에 적용한 결과 기존의 방법보다 높은 90%이상의 인식률을 얻을 수 있었다.
본 논문은 다차원 정서모델 기반 영상, 음성, 뇌파를 이용한 멀티모달 복합 감정인식 시스템을 제안한다. 사용자의 얼굴 영상, 목소리 및 뇌파를 기반으로 각각 추출된 특징을 심리학 및 인지과학 분야에서 인간의 감정을 구성하는 정서적 감응요소로 알려진 다차원 정서모델(Arousal, Valence, Dominance)에 대한 명시적 감응 정도 데이터로 대응하여 스코어링(Scoring)을 수행한다. 이후, 스코어링을 통해 나온 결과 값을 이용하여 다차원으로 구성되는 3차원 감정 모델에 매핑하여 인간의 감정(단일감정, 복합감정)뿐만 아니라 감정의 세기까지 인식한다.
Kang Bong-Seok;Han Chul-Hee;Woo Kyoung-Ho;Yang Tae-Young;Lee Chungyong;Youn Dae-Hee
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.101-104
/
1999
본 논문에서는 음성 신호를 이용해서 화자의 감정을 인식하기 위해 3가지 시스템을 구축하고 이들의 성능을 비교해 보았다. 인식 대상으로 하는 감정은 기쁨, 슬픔, 화남, 두려움, 지루함, 평상시의 감정이고, 각 감정에 대한 감정 음성 데이터베이스를 직접 구축하였다. 피치와 에너지 정보를 감성 인식의 특징으로 이용하였고, 인식 알고리듬은 MLB(Maximum-Likelihood Bayes)분류기, NN(Nearest Neighbor)분류기 및 HMM(Hidden Markov Model)분류기를 이용하였다. 이 중 MLB 분류기와 NN 분류기에서는 특징벡터로 피치와 에너지의 평균과 표준편차, 최대값 등 통계적인 정보를 이용하였고, TMM 분류기에서는 각 프레임에서의 델타 피치와 델타델타 피치, 델타 에너지와 델타델타 에너지 등 시간적 정보를 이용하였다. 실험은 화자종속, 문장독립형 방식으로 하였고, 인식 실험 결과는 MLB를 이용해서 $68.9\%, NN을 이용해서 $66.7\%를 얻었고, HMM 분류기를 이용해서 $89.30\%를 얻었다.
Journal of the Korean Institute of Intelligent Systems
/
v.13
no.1
/
pp.45-50
/
2003
Recently, robots technique has been developed remarkably. Emotion recognition is necessary to make an intimate robot. This paper shows the simulator and simulation result which recognize or classify emotions by learning pitch pattern. Also, because the pitch is not sufficient for recognizing emotion, we added acoustic elements. For that reason, we analyze the relation between emotion and acoustic elements. The simulator is composed of the DRNN(Dynamic Recurrent Neural Network), Feature extraction. DRNN is a learning algorithm for pitch pattern.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.