• Title/Summary/Keyword: 은닉 마르코브 모델

Search Result 4, Processing Time 0.022 seconds

Video Summarization Using Hidden Markov Model (은닉 마르코브 모델을 이용한 비디오 요약 시스템)

  • 박호식;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1175-1181
    • /
    • 2004
  • This paper proposes a system to analyze and summarize the video shots of baseball game TV program into fifteen categories. Our System consists of three modules: feature extraction, Hidden Markov Model (HMM) training, and video shot categorization. Video Shots belongs to the same class are not necessarily similar, so we require that the training set is large enough to include video shot with all possible variations to create a robust Hidden Markov Model. In the experiments, we have illustrated that our system can recognize the 15 different shot classes with a success ratio of 84.72%.

선박의 종류별 선원의 행동오류 추정과 예측에 관한 기초 연구

  • Im, Jeong-Bin;Lee, Chun-Gi;Jeong, Jae-Yong;Park, Deuk-Jin;Gang, Yu-Mi;Park, Cho-Hui
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.19-21
    • /
    • 2018
  • 선원의 행동오류는 해양사고를 야기하는 하나의 직접적인 원인이기 때문에 이를 이해하는 것은 해양사고 예방에 근본이 된다. 선원의 행동오류를 이해하기 위해서는 행동오류를 추정하고 예측할 수 있어야 한다. 본 연구에서는 은닉 마르코브 모델(Hidden Markov Model, HMM)을 이용하여 선원들의 행동오류를 추정하고 예측하였다. 아울러 5가지 선박의 종류 각각에 나타나는 선원들의 행동오류를 서로 비교 분석하였다. 모델에 사용한 데이터는 해양안전심판원의 해양사고 보고서에 기록된 내용을 SRKBB(Skill-, Rule- and Knowledge-Based Behavior) 모델을 기반으로 분류하고 관측 수열을 생성하며 라벨링 작업을 통해서 구축하였다. 구축한 데이터를 적용하여 HMM을 보정하고 파라미터를 획득하여 선원들의 행동오류에 관한 모델을 구축하였다. 실험 결과, 선박 종류별로 선원들의 행동오류의 패턴은 서로 다르고, 이를 통해서 선박종류별 해기사들의 행동오류의 추정과 예측이 가능함을 일차적으로 확인할 수 있었다. 추후 본 연구를 지속 전개하여 해양사고 예방을 위한 인적오류의 저감에 기여할 수 있는 방안을 모색할 에정이다.

  • PDF

Development of an Integer Algorithm for Computation of the Matching Probability in the Hidden Markov Model (I) (은닉마르코브 모델의 부합확률연산의 정수화 알고리즘 개발 (I))

  • 김진헌;김민기;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.11-19
    • /
    • 1994
  • The matching probability P(ο/$\lambda$), of the signal sequence(ο) observed for a finite time interval with a HMM (Hidden Markov Model $\lambda$) indicates the probability that signal comes from the given model. By utilizing the fact that the probability represents matching score of the observed signal with the model we can recognize an unknown signal pattern by comparing the magnitudes of the matching probabilities with respect to the known models. Because the algorithm however uses floating point variables during the computing process hardware implementation of the algorithm requires floating point units. This paper proposes an integer algorithm which uses positive integer numbers rather than float point ones to compute the matching probability so that we can economically realize the algorithm into hardware. The algorithm makes the model parameters integer numbers by multiplying positive constants and prevents from divergence of data through the normalization of variables at each step. The final equation of matching probability is composed of constant terms and a variable term which contains logarithm operations. A scheme to make the log conversion table smaller is also presented. To analyze the qualitive characteristics of the proposed algorithm we attatch simulation result performed on two groups of 10 hypothetic models respectively and inspect the statistical properties with repect to the model order the magnitude of scaling constants and the effect of the observation length.

  • PDF