• 제목/요약/키워드: 은닉노드

검색결과 150건 처리시간 0.029초

신경망의 노드 가지치기를 위한 유전 알고리즘 (Genetic Algorithm for Node P겨ning of Neural Networks)

  • 허기수;오일석
    • 전자공학회논문지CI
    • /
    • 제46권2호
    • /
    • pp.65-74
    • /
    • 2009
  • 신경망의 구조를 최적화하기 위해서는 노드 또는 연결을 잘라내는 가지치기 방법과 노드를 추가해 나가는 구조 증가 방법이 있다. 이 논문은 신경망의 구조 최적화를 위해 가지치기 방법을 사용하며, 최적의 노드 가지치기를 찾기 위해 유전 알고리즘을 사용한다. 기존 연구에서는 입력층과 은닉층의 노드를 따로 최적화 대상으로 삼았다 우리는 두 층의 노드를 하나의 염색체에 표현하여 동시 최적화를 꾀하였다. 자식은 부모의 가중치를 상속받는다 학습을 위해서는 기존의 오류 역전파 알고리즘을 사용한다. 실험은 UCI Machine Learning Repository에서 제공한 다양한 데이터를 사용하였다. 실험 결과 신경망 노드 가지치기 비율이 평균 $8{\sim}25%$에서 좋은 성능을 얻을 수 있었다. 또한 다른 가지치기 및 구조 증가 알고리즘과의 교차검증에 대한 t-검정 결과 그들에 비해 우수한 성능을 보였다.

무선 네트워크에서의 초증가 수열을 통한 주소 은닉 기법 설계 (Design of the Covered Address Generation using the Super Increasing Sequence in Wireless Networks)

  • 천준호;김성찬;장근원;도경화;전문석
    • 정보처리학회논문지C
    • /
    • 제14C권5호
    • /
    • pp.411-416
    • /
    • 2007
  • 대부분의 무선 네트워크 보안 기법은 암호학적인 안정성을 기반으로 통신 내용을 악의적인 호스트로 부터 보호하는 기밀성을 제공하지만 통신의 논리/물리적 주소를 노출시킨다. 이는 악의적인 노드에게 통신 내용은 숨길 수 있지만 대략의 전송량과 송신자와 수신자를 노출시키는 단점을 갖는다. 본 논문에서 제안하는 은닉주소 체계는 송신자와 수신자의 주소를 초증가 수열을 사용한 knapsack problem을 응용하여 생성된 은닉주소로 치환한다. 또한 은닉주소의 잦은 변환을 통해 악의적인 사용자가 공격 대상을 감시하거나 측정 호스트를 공격 대상으로 삼는 것을 원천적으로 차단한다. 이 기법은 공격 목표가 되는 호스트의 주소가 계속 변화하므로 DDoS 공격을 시도하려는 공격자가 공격 목표를 특정 할 수 없다.

3차원 손 모델링 기반의 실시간 손 포즈 추적 및 손가락 동작 인식 (Real-Time Hand Pose Tracking and Finger Action Recognition Based on 3D Hand Modeling)

  • 석흥일;이지홍;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권12호
    • /
    • pp.780-788
    • /
    • 2008
  • 손 포즈 모델링 및 추적은 컴퓨터 시각 분야에서 어려운 문제로 알려져 있다. 손 포즈 3차원 복원을 위한 방법에는 사용되는 카메라의 수에 따라 다중 카메라 또는 스테레오 카메라 기반 방식과 단일카메라 기반 방식이 있다. 다중 카메라의 경우 여러 대의 카메라를 설치하거나 동기화를 시키는 등에 대한 제약사항이 따른다. 본 논문에서는 확률 그래프 모델에서 신뢰 전파 (Belief Propagation) 알고리즘을 이용하여 단안 카메라에서 획득된 2차원 입력 영상으로부터 3차원 손 포즈를 추정하는 방법을 제안한다. 또한, 은닉 마르코프 모델(Hidden Markov Model)을 인식기로 하여 손가락 클릭 동작을 인식한다. 은닉 노드로 손가락의 관절 정보를 표현하고, 2차원 입력 영상에서 추출된 특징을 관측 노드로 표현한 확률 그래프 모델을 정의한다. 3차원 손 포즈 추적을 위해 그래프 모델에서의 신뢰 전파 알고리즘을 이용한다. 신뢰 전파 알고리즘을 통해 3차원 손 포즈를 추정 및 복원하고, 복원된 포즈로부터 손가락의 움직임에 대한 특징을 추출한다. 추출된 정보는 은닉 마르코프 모델의 입력값이 된다. 손가락의 자연스러운 동작을 위해 본 논문에서는 한 손가락의 클릭 동작 인식에 여러 손가락의 움직임을 함께 고려한다. 제안한 방법을 가상 키패드 시스템에 적응한 결과 300개의 동영상 테스트 데이타에 대해 94.66%의 높은 인식률을 보였다.

웨이브릿 이론을 이용한 퍼지-신경망 구조의 최적화 (The FNN Optimization Using The Wavelet Theory)

  • 김용택;서재용;연정흠;김종수;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제10권6호
    • /
    • pp.591-596
    • /
    • 2000
  • 본 논문에서는, 퍼지 신경망 시스템에 대한 최적의 규칙 베이스의 생성과 초기화를 이루기 위하여 웨이브릿 이론을 기반으로 한 퍼지 신경망 구조를 제안한다. 제안한 웨이브릿 기반의 퍼지 신경망 구조(WFNN)에서는 퍼지-신경망에 대하여 웨이브렛 함수의 성질과 다운스트레칭 메카니즘에 의하여 초기의 최적 퍼지 규칙 베이스를 구성하고 은닉층의 노드 개수를 최적화시키며, 에러 역전파 알고리즘에 의하여 각 파라미터의 조절과 학습이 진행된다. 역진자 시스템에 대한 모의 실험을 통하여 제안한 웨이브릿 기반의 퍼지 신경망 제어 시스템의 우수성을 검증하였다.

  • PDF

다중목적 입자군집 최적화 알고리즘을 이용한 방사형 기저 함수 기반 다항식 신경회로망 구조 설계 (Structural Design of Radial Basis Function-based Polynomial Neural Networks by Using Multiobjective Particle Swarm Optimization)

  • 김욱동;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1966-1967
    • /
    • 2011
  • 본 연구에서는 방사형 기저 함수를 이용한 다항식 신경회로망(Polynomial Neural Network) 분류기를 제안한다. 제안된 모델은 PNN을 기본 구조로 하여 1층의 다항식 노드 대신에 다중 출력 형태의 방사형 기저 함수를 사용하여 각 노드가 방사형 기저 함수 신경회로망(RBFNN)을 형성한다. RBFNN의 은닉층에는 fuzzy 클러스터링을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. 제안된 분류기는 입력변수의 수와 다항식 차수가 모델의 성능을 결정함으로 최적화가 필요하며 본 논문에서는 Multiobjective Particle Swarm Optimization(MoPSO)을 사용하여 모델의 성능뿐만 아니라 모델의 복잡성 및 해석력을 고려하였다. 패턴 분류기로써의 제안된 모델을 평가하기 위해 Iris 데이터를 이용하였다.

  • PDF

정제된 데이터를 이용한 신경망의 설계 자동화에 관한 연구 (An automated neural network design from a well organized data set)

  • 백주현;김홍기
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 춘계학술대회 학술발표 논문집
    • /
    • pp.53-56
    • /
    • 1998
  • 본 논문에서의 공학적인 체계성을 갖고 초기 연결 가중치 및 임계치를 결정해 주면서, 학습까지 가능한 신경망을 제안한다. 기존의 오류 역전파 신경망을 적용할 때 경험에 의하여 은닉층 노드수를 결정하거나 임의의 실수 값으로 초기 연결 가중치 및 임계값을 주었을 때 자주 발생하는 학습 마비 현상을 피할 수 있고, Bose가 제안된 Voronoi 공간 분류에 의한 신경망 구성에서 학습이 불가능하다는 제안적인 단점을 보안하였다. 초기 가중치는 Voronoi 공간 분류가 이루어져 있다고 할 때 Bose가 제안한 초기 가중치 결정법을 개선하여 사용하고, Bose의 경우 신경망 노드가 Step function을 이용하여 정보를 전달하였으나 본 연구에서는 학습이 가능한 함수인 Sigmoid function을 이용하였다. 제안된 새로운 신경망의 성능 및 효율성을 비교하기 위하여 선형분리가 불가능한 XOR문제를 실험한 결과, 기존의 학습 가능한 EBP에서 허용오차 0.05 수준일 때 80%정도 학습마비 현상이 발생하였던 심각한 문제점을 보완할 수 있었고, 또한 학습 속도면에서 8~9배 정도 빠른 성능을 나타내었다.

  • PDF

가우시안 혼합 출력 HMM을 위한 변분 베이지안 방법 (Variational Bayesian Methods for Learning HMM with Mixture of Gaussian Outputs)

  • 오장민;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.619-621
    • /
    • 2005
  • 은닉 마코프 모델은 이산 동역학을 표현할 수 있는 확률 모형이다. 우도 함수 최적화를 수행하는 전통적인 Baum-Welch 학습 알고리즘은 국소해로 수령하기 쉬우며, 우도함수의 특성상 복잡한 모델을 선호하는 바이어스가 존재한다. 베이지안 프레임워크에서는 파라미터를 랜덤 변수로 보고 이에 대한 사후 확률 분포를 추정하여 이 문제를 해결할 수 있다. 본 논문에서는 베이지안 추정을 위한 결정론적 근사화 기법인 변분 베이지안 방법을 이용, 출력 노드에 가우시안 혼합 노드를 지니는 일반화된 HMM의 추론 방법을 유도한다. 인공 데이터에 대한 실험을 통해, 본 방법이 효과적인 HMM 학습을 수행할 수 있음을 보인다.

  • PDF

신경회로망을 이용한 증기표의 함수근사 (Function approximation of steam table using the neural networks)

  • 이태환;박진현
    • 한국정보통신학회논문지
    • /
    • 제10권3호
    • /
    • pp.459-466
    • /
    • 2006
  • 열성능 평가를 위한 수치해석에서는 온도, 압력, 건도, 체적, 엔탈피, 엔트로피 등의 열역학적 성질들의 수치값이 필요하다. 그러나 이러한 성질들을 포함하고 있는 증기표를 그대로 사용할 수 없기 때문에, 효과적으로 모델링하여야 한다. 이러한 관점에서 함수근사 특성을 가진 신경회로망을 하나의 대안으로 검토하였다. 신경 회로망은 포화증기 영역과 과열증기 영역에 대해서 따로 구성하였다. 포화증기 영역에 대해서는 하나의 입력으로 7개의 출력을 얻을 수 있도록 하였으며, 각각 10개와 20개의 노드를 가진 은닉층을 구성 하였다. 과열증기 영역에 대해서는 2개의 입력으로 3개의 출력을 얻을 수 있도록 하였으며, 각각 15개와 25개의 노드를 가진 은닉층을 구성하였다. 제안된 모델은 온도, 엔탈피, 엔트로피의 백분율오차가 대부분 ${\pm}0.005%$, 압력이나 비체적의 백분율오차도 대부분 ${\pm}0.025%$ 범위 내로 수렴시킬 수 있었다. 이 성공적인 결과로부터 증기 표를 함수근사하는데 있어서 신경회로망이 아주 강력한 수단이 될 수 있음을 확인할 수 있었다.

직교 기저함수 기반의 혼합 신경회로망 구조 (Structure of the Mixed Neural Networks Based On Orthogonal Basis Functions)

  • 김성주;서재용;조현찬;김성현;김홍태
    • 전자공학회논문지CI
    • /
    • 제39권6호
    • /
    • pp.47-52
    • /
    • 2002
  • 웨이블릿 함수의 경우 스케일링 함수에서 비롯되었으며, 스케일과 중심을 결정함으로써 신경회로망의 노드로 구성된다. 본 논문에서는 웨이블릿 함수를 이용하여 망을 구성하는 과정에 스케일링 함수를 은닉층의 노드로 복합 구성한 구조를 제안하고자 한다. 제안한 구조의 특징은 스케일링 함수를 이용하여 대강 근사(rough approximation)를 행한 다음, 웨이블릿 함수를 이용하여 미세 근사(fine approximation)를 행하도록 신경회로망의 은닉층을 복합 구성하는 데 있다. 또한, 복합 신경회로망을 구성하는 과정에서 미세 근사에 필요한 웨이블릿 함수의 개수를 유전 알고리즘을 이용하여 결정하는 초기 구조의 최적화를 도모하고자 한다.

조도 적응 알고리즘 기반 지능형 White LED Dimming System의 최적화 설계 (Optimized Design of Intelligent White LED Dimming System Based on Illumination-Adaptive Algorithm)

  • 임승준;정대형;김현기;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1956-1957
    • /
    • 2011
  • 본 연구는 White LED를 이용하여 주변 밝기 변화에 빠르게 적응하는 퍼지 뉴로 Dimming Control System을 설계한다. 본 논문에서는 방사형기저함수 신경회로망(Radial Basis Function Neural Network: RBFNN)을 설계하여 실제 White LED Dimming Control System에 적용시켜 모델의 근사화 및 일반화 성능을 평가한다. 제안한 모델에서의 은닉층은 방사형기저함수를 사용하여 적합도를 구현하였고, 후반부의 연결가중치는 경사하강법을 사용한다. 이때 멤버쉽 함수의 중심점은 HCM 클러스터링 (Hard C-Means Clustering)을 적용하여 결정한다. 연결가중치는 4가지 형태의 다항식을 대입하여 출력을 평가하였다. 최종 출력의 최적화를 위하여 PSO(Particle Swarm Optimization)을 이용하여 은닉층 노드수 및 다항식 형태를 결정한다. 본 논문에서 제안한 LED Dimming Control System은 Atmega8535를 사용하여 PWM 제어 방식을 사용하고, 조도계(Cds)를 이용하여 LED의 밝기에 따른 주변의 밝기를 감지하여 조명에 적응시키는 방법을 적용하였다.

  • PDF