• 제목/요약/키워드: 융선 방향 변화량

검색결과 2건 처리시간 0.015초

지지벡터기계와 적응적 특징을 이용한 강인한 지문분류 (A Robust Fingerprint Classification using SVMs with Adaptive Features)

  • 민준기;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권1호
    • /
    • pp.41-49
    • /
    • 2008
  • 지문분류는 지문을 전역특징에 따라 미리 정의된 클래스로 분류하여 대규모 지문식별시스템의 매칭시간을 감소시키는데 유용하다. 그런데, 지문의 고유성으로 인해 전역특징이 다양하게 분포함에도 불구하고, 기존의 지문분류 방법들은 모든 지문에 대해 고정된 영역으로부터 비적응적으로 전역특징을 추출하였다. 본 논문에서는 다양한 지문을 효과적으로 분류하기 위해 각 지문에 적응적으로 특징을 추출하는 방법을 제안한다. 이는 각 지문의 융선 방향의 변화량을 계산하여 적응적으로 특징영역을 탐색한 후, 특징영역내의 융선 방향 값을 특징벡터로 추출하고 지지벡터기계(Support Vector Machines)를 이용해 분류한다. 본 논문에서는 NIST4 데이타베이스를 이용하여 실험을 수행하였다. 그 결과 5클래스 분류에 대해 90.3%, 4클래스 분류에 대해 93.7%의 분류성능을 얻었으며, 비적응적으로 추출한 특징벡터와의 비교실험을 통해 제안하는 적응적 특징추출방법의 유용성을 입증하였다.

다양한 지문의 효과적 분류를 위한 적응적 특징추출방법 (An Adaptive Feature Extraction Method for Effective Classification of Various Fingerprints)

  • 민준기;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.262-264
    • /
    • 2006
  • 지문분류는 지문을 전역특징에 따라 미리 정의된 클래스로 분류하는 기술로, 대규모 지문식별시스템의 매칭시간을 감소시키는데 유용하다. 지문은 개인마다 고유하기 때문에 각 지문마다 전역특징이 다양하게 분포하여 기존의 특징추출방법으로는 분류에 한계가 있다. 본 논문에서는 이를 해결하기 위하여 적응적 특징추출방법을 제안하였다. 이는 융선 방향의 변화량을 계산하여 지문의 전역특징을 포함하는 특징영역을 탐색한 뒤, 특징영역의 블록 방향성 정보로부터 특징벡터를 추출한다. NIST4 지문 데이터에 대한 5클래스 분류실험 결과 제안하는 특징추출방법이 90.25%의 분류성능을 보여 기존 방법보다 효과적임을 확인하였다.

  • PDF