• Title/Summary/Keyword: 율동하중

Search Result 3, Processing Time 0.015 seconds

Dynamic Load Factor for Floor Vibration due to Lively Concerts (공연하중에 의한 바닥진동 설계용 동하중계수)

  • Hong, Kap Pyo;Yoon, Kwang Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.721-728
    • /
    • 2002
  • Modern structrues are being built using high-strength and light-weight construction materials resulting in decreased structural mass and damping properties. Rhythmic activities such as jumping, dancing and clapping during lively concerts can produce excessive vibration of steel structures. In this study, dynamic load factors that occur during lively concerts were presented through vibration test and real-time monitoring of an existing concert hall. The vibration test included modal analysis and jumping test according to the forcing frequencies and the number of participants. Dynamic load foactors were acquired directly from peak acceleration responses of each harmonics. Comparing NBCC 1995, the 3rd harmonic must be included in the design of concert halls. Dynamic load factors must be increased as a result of the vibration test.

Safety Evaluation of Concert Hall Floor Vibration Using Numerical Analysis Model (수치해석모델을 이용한 콘서트 홀 바닥진동 안전성 평가)

  • Roh, Ji-Eun;Heo, Seok-Jae;Moon, Dae-Ho;Lee, Sang-Hyun;Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.469-477
    • /
    • 2017
  • In this paper, the floor vibration of an example concert hall building was measured and floor safety criteria were analytically checked through comparison between experimental and analytical results. The floor bottom plate model was constructed considering the composite effect and the analytical model was modified to have the natural frequency identical to the measured one. Also, time history analysis was conducted using the dynamic loads induced by human rhythmic movement during a musical performance, and the analytically calculated floor accelerations were similar to the measured one. Based on this model, the floor vibration level due to the group activities of about 400 persons, maximum available persons for the concert hall, was estimated. It was confirmed that the human induced dynamic loads applied to the column and beam would be much lower than the design strength. In addition, the horizontal acceleration level is just 2% of the design seismic load, so the concert hall is safe in both vertical and horizontal excitations by human rhythmic movements.

Efficient Vibration Analysis of Stadium Stands (경기장 관람석의 효율적인 진동해석)

  • 김기철;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.293-303
    • /
    • 2002
  • Recently, the use of the high strength materials and development of construction techniques have resulted in more flexible and longer spanning in the stadium systems. So the natural frequency of stadium structures are became low. Stadium stand could be led to significant dynamic response as like resonance due to spectator rhythmical activities. The accurate analysis of dynamic behavior of stadium systems and the precise investigation of the dynamic loads on stadium structures are demanded for effective design. It is desirable to apply measured dynamic loads created by spectator activities because these dynamic loads are not easy to express numerical formula. As the floor mesh of stadium stand is refined, the number of divided elements increases in numerical analysis. the rise of the number of elements makes the numbers of nodal points increased and numerous computer memory required. So it is difficult to analysis refine full model of stadium structures by using the commercial programs. In this study, the various dynamic loads induced by spectator movements are measured and analyzed. And a new modeling method that reduce the nodal points are introduced. Vibration analysis of stadium stands is executed to inspect accuracy and efficiency of proposed method in this paper.