• Title/Summary/Keyword: 유효 데이터

Search Result 1,413, Processing Time 0.038 seconds

Analyze Technologies and Trends in Commercialized Radiology Artificial Intelligence Medical Device (상용화된 영상의학 인공지능 의료기기의 기술 및 동향 분석)

  • Chang-Hwa Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.881-887
    • /
    • 2023
  • This study aims to analyze the development and current trends of AI-based medical imaging devices commercialized in South Korea. As of September 30, 2023, there were a total of 186 AI-based medical devices licensed, certified, and reported to the Korean Ministry of Food and Drug Safety, of which 138 were related to imaging. The study comprehensively examined the yearly approval trends, equipment types, application areas, and key functions from 2018 to 2023. The study found that the number of AI medical devices started from four products in 2018 and grew steadily until 2023, with a sharp increase after 2020. This can be attributed to the interaction between the advancement of AI technology and the increasing demand in the medical field. By equipment, AI medical devices were developed in the order of CT, X-ray, and MR, which reflects the characteristics and clinical importance of the images of each equipment. This study found that the development of AI medical devices for specific areas such as the thorax, cranial nerves, and musculoskeletal system is active, and the main functions are medical image analysis, detection and diagnosis assistance, and image transmission. These results suggest that AI's pattern recognition and data analysis capabilities are playing an important role in the medical imaging field. In addition, this study examined the number of Korean products that have received international certifications, particularly the US FDA and European CE. The results show that many products have been certified by both organizations, indicating that Korean AI medical devices are in line with international standards and are competitive in the global market. By analyzing the impact of AI technology on medical imaging and its potential for development, this study provides important implications for future research and development directions. However, challenges such as regulatory aspects, data quality and accessibility, and clinical validity are also pointed out, requiring continued research and improvement on these issues.

The Effect of Empathy Value of Chinese Female University Students on Affection with Sustainable Fashion Products on Affection and Purchase Intention (중국 여대생의 지속가능한 패션제품에 대한 공감가치가 호감도와 구매의사에 미치는 영향)

  • Yi-Fei Wu;Young-Sook Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.3
    • /
    • pp.35-48
    • /
    • 2024
  • This study analyzed the value empathy of environmentally sustainable fashion products, encompassing environmental, economic, and social values, drawing from existing literature. We sought to verify the relationship between empathic value and the likability and purchase intention towards these products. To validate these relationships, we formulated research hypotheses and conducted an online survey targeting female college students residing in Guangzhou, Guangdong Province, China, who have experience purchasing environmentally sustainable fashion products. The survey was conducted from August 10th to August 20th, 2023, with a total distribution of 352 questionnaires. Among the collected responses, 313 valid responses were utilized for data analysis. The collected survey data underwent frequency analysis, exploratory factor analysis, reliability and validity analysis, correlation analysis, and multiple regression analysis using SPSS 26.0 software. The analysis yielded the following results. First, the empathy value of environmentally sustainable fashion products was classified into environmental protection values, economic values, and social values. Second, the economic and social values of environmentally sustainable fashion products were found to have a positive effect on favorability. Third, it was found that the environmental protection value and social value of environmentally sustainable fashion products had a positive effect on purchase intention. Fourth, it was found that Chinese female college students' favorability toward environmentally sustainable fashion products had a positive effect on their purchase intention. Based on these results, it is judged that companies need to emphasize the characteristics of products such as environmental protective value, economic value, and social value in order to promote consumers' purchase of environmentally sustainable fashion products. The purpose of this study is to help develop marketing strategies for environmentally sustainable fashion products by providing basic data, development ideas, and methods useful for environmentally sustainable fashion-related industries and companies by analyzing the relationship between empathy value, favorability, and purchase intention.

Intelligent VOC Analyzing System Using Opinion Mining (오피니언 마이닝을 이용한 지능형 VOC 분석시스템)

  • Kim, Yoosin;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.113-125
    • /
    • 2013
  • Every company wants to know customer's requirement and makes an effort to meet them. Cause that, communication between customer and company became core competition of business and that important is increasing continuously. There are several strategies to find customer's needs, but VOC (Voice of customer) is one of most powerful communication tools and VOC gathering by several channels as telephone, post, e-mail, website and so on is so meaningful. So, almost company is gathering VOC and operating VOC system. VOC is important not only to business organization but also public organization such as government, education institute, and medical center that should drive up public service quality and customer satisfaction. Accordingly, they make a VOC gathering and analyzing System and then use for making a new product and service, and upgrade. In recent years, innovations in internet and ICT have made diverse channels such as SNS, mobile, website and call-center to collect VOC data. Although a lot of VOC data is collected through diverse channel, the proper utilization is still difficult. It is because the VOC data is made of very emotional contents by voice or text of informal style and the volume of the VOC data are so big. These unstructured big data make a difficult to store and analyze for use by human. So that, the organization need to automatic collecting, storing, classifying and analyzing system for unstructured big VOC data. This study propose an intelligent VOC analyzing system based on opinion mining to classify the unstructured VOC data automatically and determine the polarity as well as the type of VOC. And then, the basis of the VOC opinion analyzing system, called domain-oriented sentiment dictionary is created and corresponding stages are presented in detail. The experiment is conducted with 4,300 VOC data collected from a medical website to measure the effectiveness of the proposed system and utilized them to develop the sensitive data dictionary by determining the special sentiment vocabulary and their polarity value in a medical domain. Through the experiment, it comes out that positive terms such as "칭찬, 친절함, 감사, 무사히, 잘해, 감동, 미소" have high positive opinion value, and negative terms such as "퉁명, 뭡니까, 말하더군요, 무시하는" have strong negative opinion. These terms are in general use and the experiment result seems to be a high probability of opinion polarity. Furthermore, the accuracy of proposed VOC classification model has been compared and the highest classification accuracy of 77.8% is conformed at threshold with -0.50 of opinion classification of VOC. Through the proposed intelligent VOC analyzing system, the real time opinion classification and response priority of VOC can be predicted. Ultimately the positive effectiveness is expected to catch the customer complains at early stage and deal with it quickly with the lower number of staff to operate the VOC system. It can be made available human resource and time of customer service part. Above all, this study is new try to automatic analyzing the unstructured VOC data using opinion mining, and shows that the system could be used as variable to classify the positive or negative polarity of VOC opinion. It is expected to suggest practical framework of the VOC analysis to diverse use and the model can be used as real VOC analyzing system if it is implemented as system. Despite experiment results and expectation, this study has several limits. First of all, the sample data is only collected from a hospital web-site. It means that the sentimental dictionary made by sample data can be lean too much towards on that hospital and web-site. Therefore, next research has to take several channels such as call-center and SNS, and other domain like government, financial company, and education institute.

Management Guidelines on the Large Old Trees as the Natural Monuments in Seoul, Incheon, and Gyeonggi Province through the Analysis of the Growing Environment (생육환경 분석을 통한 서울·인천·경기지역 천연기념물 노거수의 관리방안)

  • Lee, Seung Je
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.1
    • /
    • pp.88-99
    • /
    • 2009
  • This study was conducted to formulate management guidelines for Natural monumental old trees in Korea through survey of tree vigor and analysis of growing environments. A total of 20 old trees designated as natural monuments in Seoul, Incheon, and Gyeonggi Province were surveyed. The biological characteristics were surveyed with 4 items of species, ages and height of trees. The surrounding environments were surveyed with 2 items of location types and surroundings. The root conditions were surveyed with 2 items of denudation and molding depth. The health conditions were surveyed with 5 items of withering rate, cavity size, bark breakaway rate, damages by blight and insects, and growing tips. The soil conditions were surveyed with 6 items of PH, organic contents, valid phosphoric acid, transposal cations(K, Ca) and soil compaction. On the basis of outcomes of these research items, mutual relations among locations, growings and soil conditions of old trees were analyzed by carring out cross tabulation, correlation, and simple and multiple regression. Management guidelines were presented searching the factors effecting on the health of the monumental old trees. On the biological characteristics, the old trees designated as natural monuments were Pinus bungeana(4 trees), Juniperus chinensis(3 trees), Ginkgo biloba(3 trees), Poncirus trifoliata(2 trees). Actinidia arguta, Wisteria floribunda, Thuja orientalis, Quercus mongolica, Sophora japonica, Fraxinus rhynchophylla, Zelkova serrata, and Pinus densiflora. The tree height ranged from 4.2 to 39.2m, and root collar rounds ranged from 1.01 to 15.2m. On the surrounding environments, The location types ; Gardens(4), historical sites(5), residental sections(3) open agricultural fields(3), mountain hills(3), and near ocean beaches(1) and stream site(1). The surroundings ; 75% denudation of roots, molded more than 10cm except 4 trees(25%). On the health conditions, 1)Withering rate ; Ginkgo biloba(20%) in Yongmoon temple, (5%) in Saki-ri, kanwha-gun, and others had no withering rate. 2) Cavity size ; all subject had $5{\sim}100cm^3$ of cavity. 3) Bark breakaway rate ; Pinus bungeana in Soosong-dong, in the shrine of Confucius, in Samchung-dong, especially high rate of cavity(5~50%) in Seoul area and in Saki-ri, Kangwha-gun were high 45% brakeaway rate. 4) Damages by blight and insects was slight due to managements. 5Growing tips ; In cases of Juniperus chinensis in Changdeok palace and SunnogDang, seoul, growing tips were 1/2, presumably cause by air pollution, and in cases of Fraxinus rhynchophylla in Paju city and Pinus densiflora in BacksaDorip-ri, Icheon city, growing tips were fine, presumably because there were no moldings. On the Soil conditions, Soil pH ranged from 5.2 to 8.3, organic matter contents from 12% to 56%, phosphorus contents from 104 to 618ppm, soil compaction ranged from 7 to 28mm( among them, Denudation was severe with 21~28mm soil compactions in cases of Pinus bungeana in Soosong -dong, Thuja orientalis in Samchung -dong, Ginkgo biloba in the shrine of Confucius and in Yongmoon temple.) Results of cross tabulation, correlation, and regression analysis showed that molding depth was the most serious factor to deteriorate the tree vigor and cambium conductivity. In addition, soil acidity, organic matter contents, disease and insect damages and cambial detachment were also related to the tree vigor. Additional research of these relationships will be needed to conduct more detailed studies. Based on the relationships between the tree vigor and growing environments, it is considered that old trees should be managed to give them more growing spaces and less abuses. Also, molded soils should be removed and further soil-molding around the tree collar should be prohibited. For the construction of systematic management and removal of harmful factors, appropriative management according to spices, persistent monitering of damaged cases and construction of management system through the accumulation of data on the relationships of soil conditions are required.

Stock-Index Invest Model Using News Big Data Opinion Mining (뉴스와 주가 : 빅데이터 감성분석을 통한 지능형 투자의사결정모형)

  • Kim, Yoo-Sin;Kim, Nam-Gyu;Jeong, Seung-Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.143-156
    • /
    • 2012
  • People easily believe that news and stock index are closely related. They think that securing news before anyone else can help them forecast the stock prices and enjoy great profit, or perhaps capture the investment opportunity. However, it is no easy feat to determine to what extent the two are related, come up with the investment decision based on news, or find out such investment information is valid. If the significance of news and its impact on the stock market are analyzed, it will be possible to extract the information that can assist the investment decisions. The reality however is that the world is inundated with a massive wave of news in real time. And news is not patterned text. This study suggests the stock-index invest model based on "News Big Data" opinion mining that systematically collects, categorizes and analyzes the news and creates investment information. To verify the validity of the model, the relationship between the result of news opinion mining and stock-index was empirically analyzed by using statistics. Steps in the mining that converts news into information for investment decision making, are as follows. First, it is indexing information of news after getting a supply of news from news provider that collects news on real-time basis. Not only contents of news but also various information such as media, time, and news type and so on are collected and classified, and then are reworked as variable from which investment decision making can be inferred. Next step is to derive word that can judge polarity by separating text of news contents into morpheme, and to tag positive/negative polarity of each word by comparing this with sentimental dictionary. Third, positive/negative polarity of news is judged by using indexed classification information and scoring rule, and then final investment decision making information is derived according to daily scoring criteria. For this study, KOSPI index and its fluctuation range has been collected for 63 days that stock market was open during 3 months from July 2011 to September in Korea Exchange, and news data was collected by parsing 766 articles of economic news media M company on web page among article carried on stock information>news>main news of portal site Naver.com. In change of the price index of stocks during 3 months, it rose on 33 days and fell on 30 days, and news contents included 197 news articles before opening of stock market, 385 news articles during the session, 184 news articles after closing of market. Results of mining of collected news contents and of comparison with stock price showed that positive/negative opinion of news contents had significant relation with stock price, and change of the price index of stocks could be better explained in case of applying news opinion by deriving in positive/negative ratio instead of judging between simplified positive and negative opinion. And in order to check whether news had an effect on fluctuation of stock price, or at least went ahead of fluctuation of stock price, in the results that change of stock price was compared only with news happening before opening of stock market, it was verified to be statistically significant as well. In addition, because news contained various type and information such as social, economic, and overseas news, and corporate earnings, the present condition of type of industry, market outlook, the present condition of market and so on, it was expected that influence on stock market or significance of the relation would be different according to the type of news, and therefore each type of news was compared with fluctuation of stock price, and the results showed that market condition, outlook, and overseas news was the most useful to explain fluctuation of news. On the contrary, news about individual company was not statistically significant, but opinion mining value showed tendency opposite to stock price, and the reason can be thought to be the appearance of promotional and planned news for preventing stock price from falling. Finally, multiple regression analysis and logistic regression analysis was carried out in order to derive function of investment decision making on the basis of relation between positive/negative opinion of news and stock price, and the results showed that regression equation using variable of market conditions, outlook, and overseas news before opening of stock market was statistically significant, and classification accuracy of logistic regression accuracy results was shown to be 70.0% in rise of stock price, 78.8% in fall of stock price, and 74.6% on average. This study first analyzed relation between news and stock price through analyzing and quantifying sensitivity of atypical news contents by using opinion mining among big data analysis techniques, and furthermore, proposed and verified smart investment decision making model that could systematically carry out opinion mining and derive and support investment information. This shows that news can be used as variable to predict the price index of stocks for investment, and it is expected the model can be used as real investment support system if it is implemented as system and verified in the future.

The Mediating Effect of Corporate Reputation between the Organizational Slack and Corporate Performance in Venture SMEs (벤처중소기업의 조직여유와 기업성과간의 관계에서 기업명성의 매개효과 연구)

  • Bae, Hoyoung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.10 no.2
    • /
    • pp.17-25
    • /
    • 2015
  • This research is to analyze the mediating effect of corporate reputation between the organizational slack and corporate performance in venture SMEs. That is, after controlling the firm size, firm age, social capital, environmental uncertainty, we test three hypothesis. First, we test the hypothesis that organizational slack has a positive effect on corporate reputation. Second, we test the hypothesis that corporate reputation has a positive effect on corporate performance. Third, we test the positive mediating role of corporate reputation between organizational slack and corporate performance. For this research, we administered the questionnaire surveys, and got the 250 effective data(companies) of korean venture SMEs. We use SPSS 18.0, and analysis the validity, reliability, correlation and multiple regression analysis of research model. As a result, we can find the three meaningful results. First, organizational slack, especially not absorbed slack but unabsorbed slack, has positive effect on the corporate reputation. Second, corporate reputation has positive effect on corporate performance. Third, corporate reputation has mediating effect between organizational slack, especially not absorbed slack but unabsorbed slack, and corporate performance. Although this research has some limitations of generalization because of the limited size of samples, we has meaning information related to the venture companies in the academic and business field.

  • PDF

Improvement Way for Mobile X-ray Examinations by Rule Revision about Safety Management of Diagnosis Radiation Occurrence System (진단용방사선발생장치의 안전관리에 관한 규칙 개정에 따른 이동형 방사선검사의 개선방안)

  • Choi, Jun-Gu;Kim, Gyeong-Su;Kim, Byeong-Gi;Ahn, Nam-Jun;Kim, Hyeong-Sun;Kim, Sang-Geon;Lim, Si-Eun
    • Journal of radiological science and technology
    • /
    • v.30 no.1
    • /
    • pp.53-59
    • /
    • 2007
  • A safety management rule of the diagnosis radiation system which opened a court 2006 February 10th was promulgated for safety of the radiation worker, patients and patients' family members. The purpose of this study is to minimize injury by radiation that can happen to patients and people around a sick ward when managing mobile X-ray system. This study analyzed sickroom environment of mobile X-ray examination and the statistical data of the Konkuk medical Information System(KIS) and the Picture Archiving Communication System(PACS). This study also investigated patient conditions, infection, relation information and related data, when the sickroom mobile X-ray examination is used. Through data analysis, many problems were expected such as restriction of space side, manpower and expense of business side, satisfaction degree decline of patient and protector of operation side. Therefore, we tried to restrict examination of multi bed sickroom, and to use treatment room in each ward to solve problem mentioned. As a result, the whole sickroom mobile X-ray examination rate decreased to near 50%, and mobile X-ray examination rate for inpatients decreased to more than 85%. This study shows that several attempts we did should be helpful for manpower, patients satisfaction and expenses. Also, they should protect patients in sickroom from unnecessary radiation exposure and could minimize inconvenience of patients and their family members from x-ray examination.

  • PDF

Backward Path Tracking Control of a Trailer Type Robot Using a RCGS-Based Model (RCGA 기반의 모델을 이용한 트레일러형 로봇의 후방경로 추종제어)

  • Wi, Yong-Uk;Kim, Heon-Hui;Ha, Yun-Su;Jin, Gang-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.717-722
    • /
    • 2001
  • This paper presents a methodology on the backward path tracking control of a trailer type robot which consists of two parts: a tractor and a trailer. It is difficult to control the motion of a trailer vehicle since its dynamics is non-holonomic. Therefore, in this paper, the modeling and parameter estimation of the system using a real-coded genetic algorithm(RCGA) is proposed and a backward path tracking control algorithm is then obtained based on the linearized model. Experimental results verify the effectiveness of the proposed method.

  • PDF

Analysis of Interactions in Multiple Genes using IFSA(Independent Feature Subspace Analysis) (IFSA 알고리즘을 이용한 유전자 상호 관계 분석)

  • Kim, Hye-Jin;Choi, Seung-Jin;Bang, Sung-Yang
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.3
    • /
    • pp.157-165
    • /
    • 2006
  • The change of external/internal factors of the cell rquires specific biological functions to maintain life. Such functions encourage particular genes to jnteract/regulate each other in multiple ways. Accordingly, we applied a linear decomposition model IFSA, which derives hidden variables, called the 'expression mode' that corresponds to the functions. To interpret gene interaction/regulation, we used a cross-correlation method given an expression mode. Linear decomposition models such as principal component analysis (PCA) and independent component analysis (ICA) were shown to be useful in analyzing high dimensional DNA microarray data, compared to clustering methods. These methods assume that gene expression is controlled by a linear combination of uncorrelated/indepdendent latent variables. However these methods have some difficulty in grouping similar patterns which are slightly time-delayed or asymmetric since only exactly matched Patterns are considered. In order to overcome this, we employ the (IFSA) method of [1] to locate phase- and shut-invariant features. Membership scoring functions play an important role to classify genes since linear decomposition models basically aim at data reduction not but at grouping data. We address a new function essential to the IFSA method. In this paper we stress that IFSA is useful in grouping functionally-related genes in the presence of time-shift and expression phase variance. Ultimately, we propose a new approach to investigate the multiple interaction information of genes.

Direct Reconstruction of Displaced Subdivision Mesh from Unorganized 3D Points (연결정보가 없는 3차원 점으로부터 차이분할메쉬 직접 복원)

  • Jung, Won-Ki;Kim, Chang-Heon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.6
    • /
    • pp.307-317
    • /
    • 2002
  • In this paper we propose a new mesh reconstruction scheme that produces a displaced subdivision surface directly from unorganized points. The displaced subdivision surface is a new mesh representation that defines a detailed mesh with a displacement map over a smooth domain surface, but original displaced subdivision surface algorithm needs an explicit polygonal mesh since it is not a mesh reconstruction algorithm but a mesh conversion (remeshing) algorithm. The main idea of our approach is that we sample surface detail from unorganized points without any topological information. For this, we predict a virtual triangular face from unorganized points for each sampling ray from a parameteric domain surface. Direct displaced subdivision surface reconstruction from unorganized points has much importance since the output of this algorithm has several important properties: It has compact mesh representation since most vertices can be represented by only a scalar value. Underlying structure of it is piecewise regular so it ran be easily transformed into a multiresolution mesh. Smoothness after mesh deformation is automatically preserved. We avoid time-consuming global energy optimization by employing the input data dependant mesh smoothing, so we can get a good quality displaced subdivision surface quickly.