• 제목/요약/키워드: 유효흡입양정

검색결과 9건 처리시간 0.027초

로켓엔진용 산화제펌프의 수류 시험 (The Hydraulic Tests of LOX Pumps for a Liquid Rocket Engine)

  • 김대진;홍순삼;최창호;김진한
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.523-526
    • /
    • 2006
  • A series of hydraulic and cavitation tests are performed in water environment in order to verify the hydraulic and cavitation performance of three types of LOX pumps. All the performances of the pumps are found to be satisfied with each design requirement. In the hydraulic tests, the head and efficiency are increased as the gap between floating ring seals and the impeller shoulder is decreased. In the cavitation tests, some pumps show decrease in the cavitation performance as the flowrate of the pump is decreased.

  • PDF

흡입 유로 형상이 터보펌프의 성능 및 캐비테이션에 미치는 영향에 관한 실험적 연구 (An Experimental Study on Influence of Suction Path to Performance and Cavitation for Turbopump)

  • 강병윤;추성한;강신형
    • 한국유체기계학회 논문집
    • /
    • 제16권2호
    • /
    • pp.21-26
    • /
    • 2013
  • Super-cavitating vehicle which is operating under water speeds up to 100m/s. In this process super-cavitation around body reduces frictional resistance. This paper introduces experimental study on different width of suction path as there is a warhead in the torpedo. Hydraulic performances of turbopump at non-cavitating condition does not display a significant differences depending on different width of suction path. However, cavitation performance of each model shows obvious differences in the same condition of experience. In case of radial inlet, the value of critical NPSH(which indicates 3% head drop) increases about 20% in comparison of axial inlet.

산업용 수직펌프의 흡입성능 향상 연구 (A Study of NPSH Required Performance Improvement for a Industrial Vertical Pump)

  • 정경남;박종후;김용균;김해천
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.909-915
    • /
    • 2009
  • In this paper, a study of performance improvement for a centrifugal vertical pump having specific speed of 330 is introduced. The existing model has high efficiency but needs better NPSH required performance. Such that new pump model is designed to obtain larger suction specific speed. 6 design parameters considered to affect pump performance are selected for impeller design. Key design parameters are investigated using by design of experiments and CFD, and impeller inlet diameter is increased to get better suction performance. The amount of inlet diameter increase is determined by using cavitation analysis. The results show that new design model has higher efficiency and better NPSH required performance than the existing model.

인듀서의 크기가 터보펌프의 흡입성능 상사에 미치는 영향에 관한 연구 (Put Effect of the inducer scale on the suction performance similarity of a turbopump)

  • 강병윤;강신형
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.47-52
    • /
    • 2014
  • An inducer is forward-attached to an impeller to improve the suction performance. This paper described the experimental and numerical investigations on the concept of NPSH similarity about the inducer scale. As Reynolds number decreased for the same scale inducer, the hydraulic performance is slightly reduced because of the viscosity. The suction performance similarity is in good agreement. For different scale inducers, the NPSH similarity did not follow the conventional rule which is proportional to the square of the inducer diameter. A cavity of two times scale inducer grows faster under cavitation inception, and the head is more drop as the fluid passes blades. Because of the simplified cavitation model and vapor pressure, the NPSH similarity dose not have an accuracy. This study suggested an empirical formula for the NPSH similarity.

원심펌프 임펠러의 캐비테이션 성능평가에 관한 수치적 연구 (Numerical Study on Cavitation Performance Evaluation in a Centrifugal Pump Impeller)

  • 모장오;김유택;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권2호
    • /
    • pp.286-293
    • /
    • 2012
  • 본 연구에서는 설계유량 $16m^3/h$에서 설계효율 90%와 설계양정 20m의 성능을 보이며, 3,500rpm 고정회전수로 작동하는 원심펌프 임펠러를 대상으로 단상류 유동해석을 수행하였다. 임펠러는 A.J. Stepanoff 경험식에 근거로 설계되었다. 단상류 해석의 경우, 설계유량에서 88.8%와 19.4m의 효율과 양정 결과를 보여주었고, 그 결과는 설계값과 상당히 일치하였다. 다상류 해석은 다양한 NPSH 조건하에서 수행되었으며, NPSH가 8.79m 일 때, 블레이드 부압면 근처에서 캐비테이션개시가 관찰되었다. 본 연구에서 설계된 임펠러의 필요흡입헤드는 대략 6.5m이며, 이 값 이상의 입구압력조건하에서 원심펌프는 작동되어야 할 것으로 판단된다.

밸러스트 탱크의 급수/배수 시간 예측에 관한 연구 (A Study on the Leading/Unloading Time Prediction of the Ballast Tank)

  • 김환익;김문언;최도형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.33-36
    • /
    • 2004
  • The ballast tank of a ship is a system that realizes the required shipping condition and controls the draft of a ship. The loading/unloading of the ballast tank is frequently operated during navigation and the accurate prediction of the loading/unloading time is very important. A numerical algorithm that predicts the loading/unloading time of the ballast tank has been developed and applied to the prediction of the loading/unloading time of the ballast tank with various piping systems. This algorithm can be useful in optimizing the ballast tank system in early design stage.

  • PDF

원심펌프 내부의 캐비테이션 수치예측에 관한 연구 (A Study on the Numerical Prediction of Cavitation In a Centrifugal Pump)

  • 모장오;강신정;강호근;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.335-338
    • /
    • 2006
  • A Numerical study of the cavitation within a centrifugal pump is carried out using CFD commercial code, FLUENT. The objective of this study is to predict the onset of cavitation within the pump blade and the degradation in the pressure rise due to the generation and transport of vapor. A pump designed for the study is a six bladed, one-circular arc impeller design suggested by A.J. Stepanoff et al. The Steady-state calculations are performed for a wide range of flow rate without the cavitation to investigate the pump performance. The design head and efficiency show a very good agreement with the numerical results at the design flow rate. After the validation with the numerical results, the pump performance and the onset of cavitation within the blade is predicted by changing NPSH at the design flow rate.

  • PDF

고압 터보펌프용 연료펌프의 수력설계 및 성능 평가 (Hydraulic Design and Performance Evaluation of a Fuel Pump for a High Pressure Turbopump System)

  • 최범석;윤의수;오형우
    • 한국유체기계학회 논문집
    • /
    • 제8권2호
    • /
    • pp.31-38
    • /
    • 2005
  • A low NPSH and high pressure fuel pump has been designed for a turbopump system. The fuel pump has an axial inducer and a centrifugal impeller. A meanline method has been established for the preliminary design and performance prediction of pumps at design or off-design points. KeRC(Kelyish Research Center) carried out a model testing of the fuel pump with water as a working fluid at the reduced speed. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute. In the current study, the three dimensional viscous flow in the fuel pump was investigated through numerical computation. A modified design of the fuel pump was generated to improve pump performance by utilizing CFD results. The modified fuel pump was experimentally tested by ROTEM and KARI(Korea Aerospace Research Institute). The measured non-cavitating and cavitating performance showed a good agreement with designed performance.

75톤급 액체로켓엔진용 터보펌프 실매질 성능시험 (Performance Test of a 75-tonf Rocket Engine Turbopump)

  • 정은환;곽현덕;김대진;김진선;노준구;박민주;박편구;배준환;신주현;왕승원;윤석환;이항기;전성민;최창호;홍순삼;김성룡;김승한;우성필;한영민;김진한
    • 한국추진공학회지
    • /
    • 제20권2호
    • /
    • pp.86-93
    • /
    • 2016
  • 75톤급 액체로켓엔진용 터보펌프 개발 시제에 대한 조립체 성능시험이 터보펌프 실매질 시험설비에서 수행되었다. LN2와 케로신을 적용한 첫 시험에서는 터보펌프 구성품들의 조립체 상태에서의 수력/공력 성능 및 출력 매칭 점검이 설계회전수 근방에서 이루어 졌으며 LOX와 케로신을 적용한 실매질 시험에서는 터보펌프의 설계성능 및 엔진운용영역 탈설계 성능 검증이 이루어졌다. 탈설계시험의 경우, 내구성 검증을 위해 엔진의 운용시간을 초과하여 터보펌프가 운용되었으며 펌프입구압력을 설계 요구 유효흡입양정(NPSHr)에 가깝게 설정하여 흡입성능 검증을 병행하였다. 개발된 75톤급 액체로켓용 터보펌프는 성능, 운용시간의 엔진 요구규격을 만족시키는 것으로 확인되었다.