• Title/Summary/Keyword: 유효응력확대계수비

Search Result 2, Processing Time 0.016 seconds

The Behavior of Fatigue Crack Propagation by Position of Indentations (압흔가공위치에 따른 피로균열 전파거동)

  • 송삼홍;최진호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.28-32
    • /
    • 1995
  • This effective way for repairing a fatigue crack is making indetations around fatigue crack tip. In this paper, we performed fatigue test to investigate the optimal position of the indentations, and observed crack opening behavior at the same time. The indentation positions of specimens were on the crack tip, front and back of the crack tip. The results of the experiment showed taht it was veryeffective way to increase fatigue life that making indentations on the crack tip, and it was the optimal position that making indentations on the crack tip.

  • PDF

Fatigue Crack Propagation and Fatigue Life Evaluation of High-Performance Steel using Modified Forman Model (수정 Forman 모델을 이용한 고성능 강재의 피로균열전파와 피로수명평가)

  • Choi, Sung-Won;Kang, Dong-Hwan;Lee, Jong-Kwan;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1361-1368
    • /
    • 2011
  • Fatigue crack propagation behavior and the fatigue life in-high performance steel were investigated by means of fatigue crack propagation tests under constant loading conditions of 'R=0.1 and f=0.1 Hz', 'R=0.3 and f=0.3 Hz', and 'R=0.5 and f=0.5 Hz' for the load ratio and frequency, respectively. A modified Forman model was developed to describe the fatigue crack propagation behavior for the conditions. The modified Forman model is applicable to all fatigue crack propagation regions I, II, and III by implementing the threshold stress intensity factor range and the effective stress intensity factor range caused by crack closure. The results show that predicted fatigue lives of Forman and modified Forman models were 8,814 and 12,292 cycles, respectively when the crack propagated approximately 5.0 mm and the load ratio and frequency were both 0.1. Comparison of the test results indicates that the modified Forman model showed much more effective fatigue crack propagation behavior in high-performance steel.