• Title/Summary/Keyword: 유효경화깊이

Search Result 6, Processing Time 0.027 seconds

A Study on the Surface Hardening in Low Alloy Steels using Plasma Nitriding (플라즈마 질화를 이용한 저합금강의 표면강화 연구)

  • 김동원;정진묵;이원종
    • Korean Journal of Crystallography
    • /
    • v.10 no.1
    • /
    • pp.13-19
    • /
    • 1999
  • 저합금강인 SCM415강에 대한 플라즈마 질화의 변수에 따른 질화특성을 관찰하여 최적공정을 확립한 후 기존의 질화법인 염욕질화와 가스질화 되어진 시편과 피로특성을 비교하였다. 가스조정비는 질소대 수소의 비가 3:1일 때 가장 높은 표면강도를 가지며, 온도는 높아질수록 표면강도는 낮아지고 유효경화깊이는 깊어지는 것을 알 수 있었다. 또한 질화시간이 증가될수록 표면경도는 낮아지고 유효경화깊이는 깊어졌다. 본 플라즈마 질화장비에서의 최적공정조건은 공정온도 500℃, 공정시간 4시간, 질소와 수소의 비가 3:1으로 관찰되었고, 이 때 표면경도는 1181 Hv, 화합물층의 깊이 17 ㎛, 유효경화깊이 450 ㎛로 측정되었다. 가스질화 되어진 시편의 표면경도는 945 Hv, 유효경화깊이 250 ㎛였고, 염욕질화 되어진 시편의 경우는 각 846 Hv, 300㎛으로 관찰되었다. 또한 플라즈마 질화공정을 거친 질화강과 가스질화, 염욕질화 되어진 질화강의 피로특성을 평가한 결과 플라즈마 질화강이 가스질화, 염욕질화 되어진 질화강에 비하여 1.5∼2배의 우수한 피로특성을 나타내었다.

  • PDF

Fatigue Characteristic and Life prediction of Induction Surface Hardened Cr-Mo Steel (고주파 표면열처리된 Cr-Mo강재의 피로특성과 수명예측)

  • 송삼흥;최병호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.676-679
    • /
    • 1995
  • Practically, induction surface hardening is used widely to enhance the local strength of structure. In this study, Fatigue limit and its S-T characteristic for raw and induction hardened specimen of SCM440 is studied experimentally. The life prediction was considered by Juvinall's equation and its predicted result is compared with experiment.

  • PDF

The Characteristics of Ductile Cast Iron Heat-treated by $CO_2$Laser (구상흑연주철의 $CO_2$레이저 표면경화 특성)

  • 정원기;전병철;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.998-1002
    • /
    • 1997
  • This study has been performed to predict beam absorption with analysis of temperature field by using a FEM in co /sab 2/ laser hardening and to invesrigate into some effects of power density and travel speed of laser beam on the microstructure and hardness of ductile cast iron treated by laser surface hardening technique. Optical micrograph has shown that large martensite and small amount of retained austenite appear in inside hardened zone. Hardness measurement has revealed that the range of maximum hardness value is Hv=415 .+-. 10. The power density increases and the travel speed decreases, the depth of hardened zone increases due to increase of input power density.

  • PDF

Microstructure and Effective Case Depth of the Vacuum Carburized Steels (진공침탄열처리강의 조직 및 유효경화깊이)

  • Choi, Y.T.;Byoun, S.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.1
    • /
    • pp.32-40
    • /
    • 1992
  • This content is a part of the results of the study on the development of the vacuum carburizing technology. In this study the vacuum carburizing furnace being used was the furnace that developed through the joint project between KIMM and Kyung-Pook Heat Treating Co. from June 1988 to Nov. 1990. And the used carburizing gas was the propane gas and the introducing methods of the gas applied two methods such as pulse and constant pressure. By this study we established the basis of the furnace manufacturing technology and of the processing technology in the vacuum carburizing. Above all in this work there are notable meanings in a viewpoint of the foremost research in home. Hereafter, we are going to industrialize the vacuum carburizing technology by improving the results of the present work and by developing the process for the mass production.

  • PDF

Study on the High Frequency Heat Treatment Characteristics with the Distance between Coil and SCM440 Parts (고주파 열처리 코일과 피가열물 사이 간극에 따른 SCM440 강의 고주파 열처리 특성에 관한 연구)

  • Kim, Dae-Wan;Choi, Jee-Seok;Han, Chang-Won;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.1-7
    • /
    • 2017
  • This study investigates the high-frequency heat treatment characteristics with the distance between a coil and SCM440 parts for an automobile. Global automobile makers are focusing on research to develop high-performance automobiles with improved fuel efficiency and lower emissions in accordance with consumer demand and environmental policies. However, most research on high-frequency heat treatment has been experimental, and it is very difficult to obtain high-frequency heat treatment conditions for a specific product. Therefore, all the conditions of high-frequency heat treatment except the distance between a coil and SCM440 parts were kept the same. As a result, the optimized distance between the coil and SCM440 parts was observed to be 1-2 mm. When the distance between the coil and SCM440 parts was over 3 mm, the effective case hardness depth and total case hardness depth did not satisfy the standards.

Study on Effective Case Depth for Case Hardened Rolling Bearings (탄소 표면경화처리 구름베어링의 유효 경화 깊이에 대한 고찰)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • The effective case depth for case-hardened rolling bearing has been discussed. For this purpose, rolling contact fatigue tests for ball bearings built with inner race of various hardness values were conducted until L10 calculating rating life using a bearing life test machine under radial loading. Then, the distribution of residual stress below the inner raceway, which depended on the hardness value, was measured by X-ray diffraction. As a result, the linear relationship was established between the hardness value of the inner race and the theoretical shear stress evaluated at the depth where the residual stress disappeared below the inner raceway. Based on the relationship, it could be found that the factor of safety in bearing manufacturer’s rules for the effective case depth of case hardened rolling bearings was set higher. However, it could be also found that the hardness values at the depth where the maximum shearing stress acted below the raceway surface in a tapered roller bearing hardened by the carburizing process, were not sufficient for preventing plastic deformation under the basic dynamic load rating. Consequently, further efforts were still required to reduce or to disperse the contact load on the material design of a rolling bearing in order to prolong its life.