• Title/Summary/Keyword: 유한체적방법

Search Result 177, Processing Time 0.034 seconds

Required Time for Isotopic and Ko Consolidation of Marine Clay in Triaxial Cell (삼축셀에서 해성점토의 등방 및 Ko 압밀소요 시간)

  • Lee, Kyeong-Jun;Jung, Du-Hwoe;Im, Jong-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.137-147
    • /
    • 2007
  • Isotropic (instant loading) and Ko (gradual increase loading) consolidation tests were conducted in triaxial test equipment using cylindrical sample (5.0 cm in diameter and 10.0 cm in height) on two marine clay deposits. The duration of primary consolidation was estimated by two curve fitting methods using measured strain. A differential equation of consolidation for drainage in the radial and vertical direction was solved by the implicit finite difference scheme. The results of two curve fitting methods were compared with the numerical solutions to evaluate the appropriate axial loading rate of Ko consolidation and the primary consolidation periods. In addition, primary consolidation periods of the samples with a diameter of 35 mm and a height of 70 mm were calculated. The relation of radial and vertical consolidation coefficients is also presented.

High Resolution and Large Scale Flood Modeling using 2D Finite Volume Model (2차원 유한체적모형을 적용한 고해상도 대규모 유역 홍수모델링)

  • Kim, Byunghyun;Kim, Hyun Il;Han, Kun Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.413-413
    • /
    • 2020
  • Godunov형 모형을 이용한 홍수모델링에서는 일반적으로 구조적 사각격자나 비구조적 삼각격자가 주로 적용된다. 2차원 수치모형을 이용한 홍수모델링에서 연구유역의 정보가 격자의 노드나 중심에 입력되므로 적용격자의 유형과 생성방법에 따라 모형의 입력자료 오차에 영항을 줄 수 있다. 따라서, 연구유역이 지형 변동성이 심한 지역이거나 흐름형상이나 흐름변동이 심한 구간이라면, 고해상도 격자를 통해 모형의 입력자료 오차를 최소화할 할 수 있다. 본 연구에서는 2가지 유형에 대한 연구를 수행하였다, 첫 번째는 홍수해석을 위한 2차원 모형의 격자형상과 해상도에 따른 홍수위 및 홍수범람범위를 비교·분석하는 연구를 수행하였다. 연구유역은 2000년 10월 29일부터 11월 19일까지 홍수가 발생한 영국의 Severn 강 유역이다. 연구유역의 홍수 모델링을 위한 지형자료는 3m 해상도의 LiDAR(Light Detection And Ranging)를 이용하여 구축하였으며, 격자유형 및 해상도에 따른 2차원 홍수위 및 홍수범람범위를 비교·분석하기 위해서 홍수 발생기간 동안 촬영된 4개(2000년 8월 11, 14, 15, 17일)의 ASAR(Advanced Synthetic Aperture Radar) 영상자료를 활용하였다. 즉, ASAR 영상으로 촬용된 최대범람시기 및 홍수류의 배수기를 활용하여 최대범람범위뿐만 아니라 홍수가 증가하는 시기와 하류단 배수로 인해 홍수가 감소하는 시기를 모두 포함하는 홍수범람범위에 대한 격자유형별 2차원 홍수범람모형의 계산 결과에 대해 비교하였다. 두 번째는 아마존 강 중류유역의 2,500K㎡ 면적에 해당하는 대규모 유역에 대해 SRTM(Shuttle Radar Topography Mission) 지형자료를 이용하여 홍수기와 갈수기에 대해 2차원 모델링을 수행하고 그 결과를 위성자료와 비교하였다.

  • PDF

Development and evaluation of a 2-dimensional land surface flood analysis model using uniform square grid (정형 사각 격자 기반의 2차원 지표면 침수해석 모형 개발 및 평가)

  • Choi, Yun-Seok;Kim, Joo-Hun;Choi, Cheon-Kyu;Kim, Kyung-Tak
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.361-372
    • /
    • 2019
  • The purpose of this study is to develop a two-dimensional land surface flood analysis model based on uniform square grid using the governing equations except for the convective acceleration term in the momentum equation. Finite volume method and implicit method were applied to spatial and temporal discretization. In order to reduce the execution time of the model, parallel computation techniques using CPU were applied. To verify the developed model, the model was compared with the analytical solution and the behavior of the model was evaluated through numerical experiments in the virtual domain. In addition, inundation analyzes were performed at different spatial resolutions for the domestic Janghowon area and the Sebou river area in Morocco, and the results were compared with the analysis results using the CAESER-LISFLOOD (CLF) model. In model verification, simulation results were well matched with the analytical solution, and the flow analyses in the virtual domain were also evaluated to be reasonable. The results of inundation simulations in the Janghowon and the Sebou river area by this study and CLF model were similar with each other and for Janghowon area, the simulation result was also similar to the flooding area of flood hazard map. The different parts in the simulation results of this study and the CLF model were compared and evaluated for each case. The results of this study suggest that the model proposed in this study can simulate the flooding well in the floodplain. However, in case of flood analysis using the model presented in this study, the characteristics and limitations of the model by domain composition method, governing equation and numerical method should be fully considered.

Multi-scale Analysis of Thin film Considering Surface Effects (표면효과를 고려한 박막구조의 멀티스케일 해석)

  • Cho, Maeng-Hyo;Choi, Jin-Bok;Jung, Kwang-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.287-292
    • /
    • 2007
  • In general, the response of bulk material is independent of its size when it comes to considering classical elasticity theory. Because the surface to bulk ratio of the large solids is very small, the influence of surface can be negligible. But the surface effect plays important role as the surface to bulk ratio becomes larger, that is, the contribution of the surface effect must be considered in nano-size elements such as thin film or beam structure. Molecular dynamics computation has been a conventional way to analyze these ultra-thin structures but this method is limited to simulate on the order of $10^6{\sim}10^9$ atoms for a few nanoseconds, and besides, very time consuming. Analysis of structures in submicro to micro range(thin-film, wire etc.) is difficult with classical molecular dynamics due to the restriction of computing resources and time. Therefore, in this paper, the continuum-based method is considered to simulate the overall physical and mechanical properties of the structures in nano-scale, especially, for the thin-film.

Simulation of Circulation and Water Qualities on a Partly Opened Estuarine Lake Through Sluice Gate (배수갑문을 통해 부분 개방된 하구호에서의 순환과 수질모의)

  • 서승원;김정훈;유시흥
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.136-150
    • /
    • 2002
  • To improve the water quality of the recently constructed Siwhaho, sluice gates were operated to allow free exchange of water with the sea. This estuarine lake connected to the outer sea through narrow gates is affected mainly by flushing by gate operation and river flows and wind forcing sometimes. As a predicting tool far the water qualities, a three-dimensional finite volume model CE-QUAL-ICM is incorporated into a finite element hydrodynamic model, TIDE3D. In coupling these two different modules, a new error minimization technique is applied by considering conservation of mass. Model tests for one year after calibration and validation using field observation show that eutrophication and other biological changes reach quasi-steady state after initial 60 days of simulation, thus it would be necessary to consider moderate ramp up option to remove initial uncertainties due to cold start option. Sediment-water interaction might not be a concern in the long-term simulation, since its effect is negligible. Simulated results show the newly applied scheme can be applied with satisfaction not only fur lessening of eutrophic processes in an estuarine lake but also looking for some active circulation to improve water quality.

Evaluation of Constitutive Relationships and Consolidation Coefficients for Prediction of Consolidation Characteristics of Dredged and Reclaimed Ground (준설매립지반의 압밀거동 예측을 위한 구성관계식 산정 및 압밀정수 평가)

  • Jun, Sanghyun;Yoo, Namjae;Park, Byungsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.31-41
    • /
    • 2008
  • Consolidation characteristics of reclamated ground with dredged soil and methods of evaluating them are investigated in this paper. For a dredged and reclamated ground with a very high water content, self-weight consolidation being progressed, its consolidation characteristics are difficult to find since it is almost impossible to have a undisturbed sample. In order to overcome such a problem, methods of laboratory tests with disturbed sample were studied to obtain consolidation parameters required to analyze consolidation settlement in practices, using the conventional infinitesimal consolidation theory, were evaluated by carrying out various laboratory tests with disturbed soils such as oedometer test, constant rate of deformation test, Rowe-cell tests with ring diameters of 60 mm, 100 mm and 150 mm and the centrifuge model tests with 40 g-levels. Constitutive relations of void ratio - effective vertical stress - permeability were evaluated by using the inverse technique implemented with the finite strain consolidation theory and results of centrifuge model tests. Design soil parameters related to consolidation such as compression index, swelling index, coefficient of volume change and vertical and horizontal consolidation coefficients were proposed properly by analyzing the various test results comprehensively.

  • PDF

Reservoir Modeling for Carbon Dioxide Sequestration and Enhanced Oil Recovery (이산화탄소 지중저장과 원유 회수증진 공정을 위한 저류층 모델링)

  • Kim, Seung-Hyok;Lee, Jong-Min;Yoon, En-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.35-41
    • /
    • 2012
  • Manifold researches for carbon capture and storage (CCS) have been developed and large scale-carbon capture system can be performed recently. Hence, the technologies for $CO_2$ sequestration or storage become necessary to handle the captured $CO_2$. Among them, enhanced oil recovery using $CO_2$ can be a solution since it guarantees both oil recovery and $CO_2$ sequestration. In this study, the miscible flow of oil and $CO_2$ in porous media is modeled to analyze the effect of enhanced oil recovery and $CO_2$ sequestration. Based on Darcy-Muskat law, the equation is modified to consider miscibility of oil and $CO_2$ and the change of viscosity. Finite volume method is used for numerical modeling. As results, the pressure and oil saturation changes with time can be predicted when oil, water, and $CO_2$ are injected, respectively, and $CO_2$ injection is more efficient than water injection for oil recovery.

A Preliminary Study for the Prediction of Leaking-Oil Amount from a Ruptured Tank (파손된 기름 탱크로부터의 유출양 산정을 위한 기초 연구)

  • Kim Wu-Joan;Lee Young-Yeon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.4
    • /
    • pp.21-31
    • /
    • 2001
  • When an oil-spilling accident occurs at sea, it is of the primary importance to predict the amount of oil leakage for the swift response and decision-making. The simplest method of oil-leakage estimation is based on the hydrostatic pressure balance between oil inside the tank and seawater outside of leakage hole, that is the so-called Torricelli equilibrium relation. However, there exists discrepancy between the reality and the Torricelli relation, since the latter is obtained from the quasi-steady treatment of Bernoulli equation ignoring viscous friction. A preliminary experiment has been performed to find out the oil-leaking speed and shape. Soy-bean oil inside the inner tank was ejected into water of the outer tank through four different leakage holes to record the amount of oil leakage. Furthermore, a CFD (Computational Fluid Dynamics) method was utilized to simulate the experimental situation. The Wavier-Stokes equations were solved for two-density flow of oil and water. VOF method was employed to capture the shape of their interface. It is found that the oil-leaking speed varies due to the frictional resistance of the leakage hole passage dependent on its aspect ratio. The Torricelli factor relating the speed predicted by using the hydrostatic balance and the real leakage speed is assessed. For the present experimental setup, Torricelli factors were in the range of 35%~55% depending on the aspect ratio of leakage holes. On the other hand, CFD results predicted that Torricelli factor could be 52% regardless of the aspect ratio of the leakage holes, when the frictional resistance of leakage hole passage was neglected.

  • PDF

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part II. Model Implementation (대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: II. 모형적용)

  • Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.23-27
    • /
    • 2008
  • The new conjunctive surface-subsurface flow model at a large scale was developed by using a 1-D Diffusion Wave (DW) model for surface flow interacting with the 3-D Volume Averaged Soil-moisture Transport (VAST) model for subsurface flow for the comprehensive terrestrial water and energy predictions in Land Surface Models (LSMs). A selection of numerical implementation schemes is employed for each flow component. The 3-D VAST model is implemented using a time splitting scheme applying an explicit method for lateral flow after a fully implicit method for vertical flow. The 1-D DW model is then solved by MacCormack finite difference scheme. This new conjunctive flow model is substituted for the existing 1-D hydrologic scheme in Common Land Model (CLM), one of the state-of-the-art LSMs. The new conjunctive flow model coupled to CLM is tested for a study domain around the Ohio Valley. The simulation results show that the interaction between surface flow and subsurface flow associated with the flow routing scheme matches the runoff prediction with the observations more closely in the new coupled CLM simulations. This improved terrestrial hydrologic module will be coupled to the Climate extension of the next-generation Weather Research and Forecasting (CWRF) model for advanced regional, continental, and global hydroclimatological studies and the prevention of disasters caused by climate changes.

Fresh Water Flume Analysis Using an Unstructured Grid Ocean Circulation Model (비정규격자계 해양순환 모델을 이용한 하구에서의 담수 유출분석)

  • Hwang, Jin-Hwan;Park, Young-Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.227-234
    • /
    • 2009
  • Using a finite volume ocean circulation model based on an unstructured grid (FVCOM), we studied the structure of a fresh water bulge that influences on the Region Of Freshwater Influence. Fresh water discharged a river forms a coastal boundary current to the righthand side and a cyclonically circulation freshwater bulge that grows with time. In the middle of the bulge, vertical motions bring fresh water to the bottom. When tidal motions are included, the bulge disappears while the boundary currents becomes wider. Through a simple comparison of areas occupied low salinity water we quantified vertical and horizontal mixing due to the tide and showed that the tidal motion enhances the vertical mixing. During the first few tidal cycles right after the onset of the river discharge, due to tidal excursion the horizontal mixing becomes stronger. The vertical mixing by the tide mixes the fresh water After a certain time the water around the river mouth is well mixed and the horizontal excursion of the fresh water near the river mouth does not have much effect on the horizontal mixing. When there is no tidal motion horizontal mixing is mainly by the inertial instability at the surface and the horizontal mixing becomes stronger over time.

  • PDF