• Title/Summary/Keyword: 유탄성해석

Search Result 64, Processing Time 0.03 seconds

Measurements and Analysis on Hydroelastic Flow-Structure Interactions (유체-구조 유탄성 연성운동 측정해석)

  • Doh, D.H.;Jo, H.J.;Hwang, T.G.;Cho, K.R.;Pyeon, Y.B.;Cho, Y.B.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.53-54
    • /
    • 2006
  • Experimental analyses on the Hydroelastic Flow-Structure Interactions on pulsed impinged jet is measured with the FSIMS(Flow-Structure Interaction Measurement System. The nozzle diameter is D=15mm and two major experiments have been carried out for the cases of the distance between the nozzle tip to the elastic wall is 6.0. The pulsed jets were controlled by a solenoid valve and were impinged onto an elastic plate (material: silicon, diameter: 350mm, thickness: 0.5mm, hardness: 15). The Reynolds numbers were 20,000 and 24,000 when the jets were impinged with the volume velocities. The results showed that the elastic plate moved slightly to the opposite direction of the jet direction at the time of valve opening. It has been shown that the vortices travelling over the surface of the wall made the elastic wall distorted locally due to a vector forces between rotating forces of the vortex and a newly-incoming flow.

  • PDF

Experimental Study on the Hydroelastic Response of a Pontoon Type Structure with Nonuniform Mass and Stiffness (불균일 강성을 갖는 폰툰형 구조물의 유탄성 응답 특성에 관한 실험 연구)

  • Cho, Seok-Kyu;Hong, Sa-Young;Kim, Jin-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.34-40
    • /
    • 2004
  • Very Large Floating Structure(VLFS) is regarded as one of promising candidates for the future utilization of ocean space. VLFS has the merits of small environmental effect. short construction term, easiness for extension and removal. It is well known that hydroelastic response is one of major design concerns of such a huge structure. Most of studies on the hydroelastic analysis of VLFS assumed uniform mass and bending stiffness. In case of a floating hotel where noticeable change of mass and stiffness at the hotel part is expected. it is necessary to investigate the effect of nonuniform mass and bending stiffness on the hydroelastic response. A model test of a pontoon type VLFS with nonuniform bending stiffness carried out for performance evaluation of a floating marina-hotel-convention center is described in this paper. Through investigation of model test results and comparison with numerical analysis using eigenfunction method, effect of the variation of bending stiffness is discussed.

A Study on the Numerical Methodologies of Hydroelasticity Analysis for Ship Springing Problem (스프링잉 응답을 위한 유탄성 해석의 수치기법에 대한 연구)

  • Kim, Yoo-Il;Kim, Kyong-Hwan;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.232-248
    • /
    • 2009
  • Numerical methodology to solve ship springing problem, which is basically fluid-structure interaction problem, was explored in this study. Solution of this hydroelasticity problem was sought by coupling higher order B-spline Rankine panel method and finite element method in time domain, each of which is introduced for fluid and structure domain respectively. Even though varieties of different combinations in terms of numerical scheme are possible and have been tried by many researchers to solve the problem, no systematic study regarding the characteristics of each scheme has been done so far. Here, extensive case studies have been done on the numerical schemes especially focusing on the iteration method, FE analysis of beam-like structure, handling of forward speed problem and so on. Two different iteration scheme, Newton style one and fixed point iteration, were tried in this study and results were compared between the two. For the solution of the FE-based equation of motion, direct integration and modal superposition method were compared with each other from the viewpoint of its efficiency and accuracy. Finally, calculation of second derivative of basis potential, which is difficult to obtain with accuracy within grid-based method like BEM was discussed.

Hydroelastic Behavior for a Very Lagre Floating Structure of Poontoon-Type in Multi-Directional Irregular Waves (다방향불규칙파중의 Pontoon형의 초대형부유식해양구조물에 대한 유탄성응답 특성)

  • Kim, Chel-Hyun;Jo, Hyo-Jae;Lee, Seung-Chul;Goo, Ja-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.83-90
    • /
    • 2006
  • Recently, as the technology of utilization for the ocean space is being advanced, floating structures are asked for being mare and mare huge-scale. A very large floating structure(VLFS) is considered as a flexible structure, because of a quite large length-to-breadth ratio and its geometrical flexibility. The main object of this study is to develop an accurate and convenient method on the hydroelastic response analysis of very large offshore structures on the real sea states. The numerical approach for the hydorelastic responses is based on the combination of the three dimensional source distribution methods, the dynamic response analysis method and the spectral analysis method. A model is considered as many rigid bodies connected elastic beam elements. The calculated results shaw good agreement with the experimental and calculated ones by Ohta.

Fatigue Strength Analysis of Pontoon Type VLFS Using Spectral Method (통계해석법에 의한 폰툰식 VLFS의 피로강도해석)

  • Park, Seong-Whan;Han, Jeong-Woo;Han, Seung-Ho;Ha, Tae-Bum;Lee, Hong-Gu;Hong, Sa-Young;Kim, Byoung-Wan;Kyoung, Jo-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.351-361
    • /
    • 2006
  • The fatigue strength analysis of VLFS is carried out by using a 3-dimensional plate finite element model with a zooming technology which performs the modeling of wide portions of the structure by a coarse mesh but the concerned parts by a very fine mesh of t by t level. And a stepwise substructure modeling technique for global loading conditions is applied which uses the motion response of the global structure from 2-D plate hydroelastic analysis as the enforcing nodal displacements of the concern 3-D structural zooming model. Seven incident wave angles and whole ranges of frequency domains of wave spectrum are considered. In order to consider the effect of breakwater, the modified JONSWAP wave spectrum is used. Applying the wave data of installation region, the longterm spectrum analysis is done based on stochastic process and the fatigue life of the structure is estimated. Finally some design considerations from the view point of fatigue strength analysis of VLFS are discussed.

A Three-Dimensional Dynamic Analysis of Towed Systems Part 1. A Mathematical Formulation (수중예인시스템의 3차원 동역학 해석 1부: 수학모델 정식화)

  • Hong, Sub;Hong, Seuk-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.16-22
    • /
    • 1994
  • 수중 예인시스템의 동적 거동 해석을 위한 3차원 비선형 수학모델이 제시되었다. 수중 예인체는 세장보로 이상화되었으며, 보요소의 굽임강성 및 비틈강성의 영향이 수학모델에 포함되었다. 축류가 지배적인 비정상 상대유동장내의 세장예인체의 횡방향 운동에 따른 유체동역학적 반력과 기진력에 관한 비선형 3차원 수학 정식화가 수행되었다.

  • PDF

Study on the Radiation Forces on a Pontoon Type Floating Structure and Submerged Plate : Hydrodynamic Interaction Effect by Submerged Plate (폰툰형 부체구조물과 몰수평판에 작용하는 라디에이션 유체력에 관한 연구 : 몰수평판에 의한 유체력 간섭 영향)

  • Lee, Sang-Min
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.683-687
    • /
    • 2007
  • Hydroelastic deformation of pontoon type floating structure in waves is critical in structural design. Therefore, it is necessary to develop additional technology that make to dissipate the wave energy as the submerged horizontal plate. In this study, we investigate the characteristics of hydrodynamic interaction effect by the submerged plate affecting to the radiation forces on a pontoon type floating structure using numerical analysis. We have developed the numerical method based on the composite grid system that consists of moving and fixed grid to compute the radiation forces due to the heaving motion of pontoon type floating structure and submerged plate. The numerical simulations based on the finite difference method are carried out to solve the fully nonlinear free surface involving the breaking waves and compared with the experimental data to confirm the reliability of the numerical method. Then, we discuss the interaction effects on the hydrodynamic forces that could influence on the hydroelastic response of floating structure.

Wave-blocking Efficiency of a Horizontal Porous Flexible Membrane

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • 본 논문에서는 투과성 유연막이 수면밑 일정한 깊이에 수평으로 잠겨있을 때 투과성 유연막에 의한 파랑제어성능을 살펴보았다. 해석 방법으로는 유체문제는 고유함수전개법 (Eigenfunction expansion method)을 사용하였고, 유연막과 파랑의 상호작용문제는 Newmann 이 제시한 유탄성 이론 (hydro-elastic theory)을 채택하였다. 막의 투과성 효과를 고려하기 위하여 수평막에서의 수직속도는 수평막 상하의 압력차에 선형적으로 비례하며 그들 사이에는 위상차가 없다고 가정한 Darcy 법칙을 사용하였다. 투과성 수평막의 설계변수 (초기장력, 길이, 잠긴 깊이, 공극율)와 입사파의 주파수를 바꿔가면서 반사율과 투과율 그리고 에너지 손실율을 살펴보았다.

Hydroelastic Response Analysis of Very Large Floating Structures Including the Hydrodynamic Forces due to Elastic Motions in Waves (탄성거동에 의한 유체력을 고려한 초대형 부유식 구조물의 유탄성응답 해석)

  • Kim, Chuel-Hyun;Lee, Chang-Ho;Lee, Seung-Chul;Goo, Ja-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.101-107
    • /
    • 2006
  • Recently, with the increase in requirements for marine development, a marine urbanism is being visualized, with more and more huge-scale structures at the scope of the ocean space utilization. In particular, a pontoon-type structure has attracted attention, since The Floating Structures Association of Japan proposed a new concept as the most suitable one of floating airports. The Very Lage Floating Structure (VLFS) is considered a flexible structure, for a quite large length-to-breadth ratio and its geometrical flexibility. The main objective of this study is to makean exact and convenient prediction about the hydro-elastic response on very large offshore structures in waves. The numerical approach for the hydro-elastic responses is based on the combination of the three dimensional source distribution method and the dynamic response analysis method, which assumed a dividing pontoon type structure, as many rigid bodies connected elastic beam elements. The established hydo-elastic theory was applied to the radiation forces caused by motions of a whole structure, formulated using the global coordinate system, which has the origin at the center of the structure. However, in this paper, we took radiation forces, occurred by individual motions of floating bodies, into consideration. The calculated results show good agreement with the experimental and calculated results by Yago.

Response Analysis of 3-dimensional Floating Structure Using Beam Transformation (보 변환 기법을 이용한 3차원 부유체의 응답해석)

  • Kim, Byoung-Wan;Hong, Sa-Young;Kyoung, Jo-Hyun;Cho, Seok-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.809-814
    • /
    • 2006
  • In this paper, the modified direct method employing beam transformation technique is proposed in order to efficiently calculate hydroelastic responses of floating structure. Since the proposed method expresses the displacements of three-dimensional structure with those of transformed beam which leads to small number of equations of motion, the method is numerically efficient compared to the conventional direct method. To verify the efficiency of the proposed method a 500 m-long floating structure under wave loads is considered in numerical example. Displacements, bending moments, torsion moments and shear forces are calculated and computing tine is examined. The results are also compared with those of the conventional direct method.

  • PDF