• Title/Summary/Keyword: 유출량 대비

Search Result 271, Processing Time 0.028 seconds

Development of a Method for Estimating Non-Point Pollutant Delivery Load of Each Reference Flow with Combination of BASINS/HSPF (BASINS/HSPF와 연계한 유황별 비점유달부하량 산정방법 개발)

  • Lee, Yong-Woon;Song, Kwang-Duck;Lee, Jae-Choon;Yoon, Kwang-Sik;Rhew, Doug-Hee;Lee, Su-Woong;Lee, Shin-Hoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.175-184
    • /
    • 2010
  • The purpose of this study is to develop a method for estimating the non-point pollutant delivery load of each reference flow(flows of dry, low, normal, abundant and flood seasons) with combination of BASINS/HSPF. The effectiveness of this method is evaluated by applying it to the watershed of Dongbok stream. The flow, BOD and T-P reliability indices(RI) of the BASINS/HSPF for the watershed of Dongbok stream are 1.59, 1.41, 1.28, respectively, and thus the similarity between measured and estimated values is high. The non-point pollutant load delivery ratios of BOD and T-P for the flows of dry, low and normal seasons, which are estimated by such constructed BASINS/HSPF, are 0.36 and 1.09, 0.82 and 2.19, 6.02 and 16.90, respectively, as compared with daily average of non-point loads for a year. These results show that the non-point pollutant delivery load should be estimated and applied for each reference flow, and in this case the method for estimating the non-point pollutant delivery load of each reference flow can be useful.

Evaluation of Growth Inhibition for Microcystis aeruginosa with Different Frequency of Ultrasonic Devices (초음파 장치의 주파수 변화에 따른 Microcystis aeruginosa의 성장억제 평가)

  • Jang, So Ye;Joo, Jin Chul;Kang, Eun Byeol;Ahn, Chae Min;Park, Jeongsu;Jeong, Moo Il;Lee, Dong Ho
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.3
    • /
    • pp.143-153
    • /
    • 2021
  • The growth inhibition effects of M. aeruginosa were verified using large volume (7.2 L) of algae samples and ultrasonication (high frequency of 1.6 MHz vs. low frequency of 23 kHz) in lab-scale experiment. The chlorophyll-a (chl-a) and cell number decreased gradually after 6 hr sonication with high frequency of 1.6 MHz whereas both decreased sharply after 6 hr sonication with low frequency of 23 kHz. Additionally, the first order degradation coefficient (k) values after sonication were greater than those during sonication. These results indicate that relatively low sonication energy per volume may affect the cell membrane and internal organs of M. aeruginosa in a slow and retarded manner and resulted in gradual decrease of cell numbers of M. aeruginosa. Based on the comparison of chl-a and cell number of M. aeruginosa after sonication, low frequency of 23 kHz is superior for growth inhibition of M. aeruginosa, since low frequency of 23 kHz easily penetrates the cell membrane and ruptures the internal organs including gas vesicles. As is evident in SEM and TEM images, ruptured cell membranes were clearly observed for low frequency of 23 kHz. Finally, the microcystin-LR in water is not detected and considered to be harmless in aquaculture systems.

Development and experimental verification of vortex typed nonfilter nonpoint source pollution reduction device (와류형 미필터 비점오염저감장치의 개발과 실험적 검증)

  • Jang, Suk Hwan;Lee, Jae-Kyoung;Lee, Hae-Kwang;Hwang, Sung-Gyu
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.265-277
    • /
    • 2019
  • The objective of this study was to develop and verify an effective vortex typed nonfilter nonpoint source pollution reduction device. To verify this pollution reduction device, a total of twelves scenarios (three rainfall intensities${\times}$two states${\times}$two steps) of experiments were conducted using pollutants. First, simulated inflow (rainfall intensity 2.5 mm/hr: $0.00152m^3/s$, rainfall intensity 3.395 mm/hr: $0.00206m^3/s$, rainfall intensity 6.870 mm/hr: $0.00326m^3/s$) was calculated. Second, pollutants (mixture of 25% of four particle sizes) were selected and injected. Third, pollutant removal efficiencies of this device at its initial state and operating states were measured. As a result of analysis based on rainfall intensity, the concentration of pollutants was decreased by the device at initial and operating states at all rainfall intensities. Its pollutant removal efficiency was more than 80%, the standard set by the Ministry of Environment. Its pollutant removal efficiency was gradually increased over time, reaching approximately 90%. Its pollutant removal efficiency was higher in its operating state than that in its initial state. Therefore, nonpoint source pollutants can be effectively removed by this vortex typed nonpoint source pollution reduction device developed in this study.

Quantitative analysis of drought propagation probabilities combining Bayesian networks and copula function (베이지안 네트워크와 코플라 함수의 결합을 통한 가뭄전이 발생확률의 정량적 분석)

  • Shin, Ji Yae;Ryu, Jae Hee;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.523-534
    • /
    • 2021
  • Meteorological drought originates from a precipitation deficiency and propagates to agricultural and hydrological droughts through the hydrological cycle. Comparing with the meteorological drought, agricultural and hydrological droughts have more direct impacts on human society. Thus, understanding how meteorological drought evolves to agricultural and hydrological droughts is necessary for efficient drought preparedness and response. In this study, meteorological and hydrological droughts were defined based on the observed precipitation and the synthesized streamflow by the land surface model. The Bayesian network model was applied for probabilistic analysis of the propagation relationship between meteorological and hydrological droughts. The copula function was used to estimate the joint probability in the Bayesian network. The results indicated that the propagation probabilities from the moderate and extreme meteorological droughts were ranged from 0.41 to 0.63 and from 0.83 to 0.98, respectively. In addition, the propagation probabilities were highest in autumn (0.71 ~ 0.89) and lowest in winter (0.41 ~ 0.62). The propagation probability increases as the meteorological drought evolved from summer to autumn, and the severe hydrological drought could be prevented by appropriate mitigation during that time.

Collagen Extraction Using Supercritical CO2 from Animal-Derived Waste Tissue (동물 유래 폐지방으로부터 초임계 CO2를 이용한 콜라겐 추출)

  • No, Seong-Rae;Shin, Yong-Woo;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.386-391
    • /
    • 2022
  • This study is about a technique for obtaining collagen by extracting fat by treating collagen-containing liposuction effluent in the presence of supercritical fluid. Using a supercritical solvent, a collagen extract could be obtained from animal-derived fat in a short time (about 6 hours), and about 2-3% of collagen by mass compared to the raw material could be obtained. The presence of collagen in the extract obtained by supercritical extraction was confirmed by SDS-PAGE, and it was confirmed that it was type 1 collagen having a relatively large molecular weight. In addition, the growth factors of IGF-1, bFGF, VEGF and NGF were analyzed to find out which growth factors were present in the collagen obtained by supercritical extraction, and it was found that these growth factors were contained in the extract. There was no significant difference in DNA content per mg of sample before and after supercritical treatment. Further in-depth studies are likely to be needed on decellularization technology using the supercritical process. In conclusion, the extracellular matrix obtained through the solvent extraction process using a supercritical fluid contains growth factors above a certain amount even after decellularization and removal of fat, so that it was found that not only biocompatibility is greatly increased, but also tissue regeneration can be rapidly induced.

The Estimation of Soil Moisture Index by SWAT Model and Drought Monitoring (SWAT 모형을 이용한 토양수분지수 산정과 가뭄감시)

  • Hwang, Tae Ha;Kim, Byung Sik;Kim, Hung Soo;Seoh, Byung Ha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.345-354
    • /
    • 2006
  • Drought brings on long term damage in contrast to flood, on economic loss in the region, and on ecologic and environmental disruptions. Drought is one of major natural disasters and gives a painful hardship to human beings. So we have tried to quantify the droughts for reducing drought damage and developed the drought indices for drought monitoring and management. The Palmer's drought severity index (PDSI) is widely used for the drought monitoring but it has the disadvanges and limitations in that the PDSI is estimated by considering just climate conditions as pointed out by many researchers. Thus this study uses the SWAT model which can consider soil conditions like soil type and land use in addition to climate conditions. We estimate soil water (SW) and soil moisture index (SMI) by SWAT which is a long term runoff simulation model. We apply the SWAT model to Soyang dam watershed for SMI estimation and compare SMI with PDSI for drought analysis. Say, we calibrate and validate the SWAT model by daily inflows of Soyang dam site and we estimate long term daily soil water. The estimated soil water is used for the computation of SMI based on the soil moisture deficit and we compare SMI with PDSI. As the results, we obtained the determination coefficient of 0.651 which means the SWAT model is applicable for drought monitoring and we can monitor drought in more high resolution by using GIS. So, we suggest that SMI based on the soil moisture deficit can be used for the drought monitoring and management.

Spectrum Analysis and Detection of Ships Based on Aerial Hyperspectral Remote Sensing Experiments (항공 초분광 원격탐사 실험 기반 선박 스펙트럼 분석 및 탐지)

  • Jae-Jin Park;Kyung-Ae Park;Tae-Sung Kim;Moonjin Lee
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.214-223
    • /
    • 2024
  • The recent increase in maritime traffic and coastal leisure activities has led to a rise in various marine accidents. These incidents not only result in damage to human life and property but also pose a significant risk of marine pollution involving oil and hazardous and noxious substances (HNS) spills. Therefore, effective ship monitoring is crucial for preparing and for responding to marine accidents. This study conducted an aerial experiment utilizing hyperspectral remote sensing to develop a maritime ship monitoring system. Hyperspectral aerial measurements were carried out around Gungpyeong Port in the western coastal region of the Korean Peninsula, and spectral libraries were constructed for various ship decks. The spectral correlation similarity (SCS) technique was employed for ship detection, analyzing the spatial similarity distribution between hyperspectral images and ship spectra. As a result, 15 ships were detected in the hyperspectral images. The color of each ship's deck was classified based on the highest spectral similarity. The detected ships were verified by matching them with high-resolution digital mapping camera (DMC) images. This foundational study on the application of aerial hyperspectral sensors for maritime ship detection demonstrates their potential role in future remote sensing-based ship monitoring systems.

Estimation and evaluation of irrigation water need using net water consumption concept in Jeju Island (순물소모량 개념에 의한 제주도 농업용수 수요량 산정 및 평가)

  • Kim, Chul Gyum;Kim, Nam Won
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.503-511
    • /
    • 2017
  • In order to estimate the demand for water resources planning and operation, methodology for determining the size of water supply facilities has been mainly applied to agricultural water, unlike living and industrial water, which reflects actual usage trends. This inevitably leads to an overestimation of agricultural water and can lead to an imbalance in the supply and demand of each use in terms of the total water resources plan. In this study, the difference of approaches of concept of net consumption was examined in comparison with the existing methodology and the characteristics of agricultural water demand were analyzed by applying it to whole Jeju Island. SWAT model was applied to estimate the amount of evapotranspiration, which is a key factor in estimating demand, and watershed modeling was performed to reflect geographical features, weather, runoff and water use characteristics of Jeju Island. For the past period (1992~2013), demand of Jeju Island as a whole was analyzed as 427 mm per year, and it showed a relatively high demand around the eastern and western coastal regions. Annual demand and seasonal variation characteristics of 10 river basins with watershed area of $30km^2$ or more were also analyzed. In addition, by applying the cultivated area of each crop in 2020 in the future, it is estimated that the demand corresponding to the 10-year frequency drought is 54% of the amount demanded in the previous research. This is due to the difference in approach depending on the purpose of the demand calculation. From the viewpoint of water resource management and operation, additional demand is expected as much as the net consumption. However, from the actual supply perspective, it can be judged that a facility plan that meets the existing demand amount is necessary. In order to utilize the methodologies and results presented in this study in practice, it is necessary to make a reasonable discussion in terms of policy and institutional as well as engineering verification.

A Study on Prioritization of HNS Management in Korean Waters (해상 위험·유해물질(HNS) 관리 우선순위 선정에 관한 연구)

  • Kim, Young Ryun;Kim, Tae Won;Son, Min Ho;Oh, Sangwoo;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.672-678
    • /
    • 2015
  • The types of hazardous and noxious substances (HNS) being transported by sea in Korea are at about 6,000, HNS transport volume accounts for 19% of total tonnage shipped in Korea, and the increase rate of seaborne HNS trade in Korea is 2.5 times higher than the average increase rate of the world seaborne HNS trade. Reflecting this trend, HNS spill incidents have been frequently reported in Korean waters, and there are increasing social demands to develop HNS management technology for the preparedness, response, post-treatment and restoration in relation to HNS spill incidents at sea. In this study, a risk-based HNS prioritization system was developed and an HNS risk database was built with evaluation indices such as sea transport volume, physicochemical properties, toxicities, persistency, and bioaccumulation. Risk scores for human health and marine environments were calculated by multiplying scores for toxicity and exposure. The top-20 substances in the list of HNS were tabulated, and Aniline was ranked first place, but it needs to be managed not by individuals but by HNS groups with similar score levels. Limitations were identified in obtaining data of chronic toxicity and marine ecotoxicity due to lack of testing data. It is necessary to study on marine ecotoxicological test in the near future. Moreover, the priority list of HNS is expected to be utilized in the development of HNS management technology and the relevant technologies, after the expert's review process and making up for the lack of test data in the current research results.

A Study on The Introduction of LID Prior Consultation for Small-Scale Development Projects - Focusing on Cost-Benefit Analysis - (소규모 개발사업의 저영향개발(LID) 사전협의 제도 도입 연구 - 비용편익 분석을 중심으로 -)

  • Ji, Min-Kyu;Sagong, Hee;Joo, Yong-Jun
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2020
  • Rapid urbanization has elevated the risk of urban flooding due to the increase in the impervious surface, causing environmental disasters and environmental pollution problems, such as lowering the groundwater level and increasing water pollution. In Korea, low impact development (LID) techniques have been introduced to minimize these environmental impacts and maintain the water cycle soundness. However, most small-scale development projects are in blind spots because there is no legal basis for rainfall runoff management. Small-scale development projects that increase the surface runoff of rainwater are required to mandate the application of LID facilities in accordance with the polluters' responsibility principle. Therefore, it is necessary to implement a preliminary consultation system for water cycle recovery. This study focuses on the cost-benefit analysis on the application of LID techniques for small-scale development projects. The scale of nationwide small-scale development projects used for cost-benefit analysis were defined as buildings with a land area of more than 1,000 ㎡ or a total floor area of 1,500 ㎡. As a result of analyzing the cost-benefits from the installation of LID facilities, they were found to be much lower than the economic standard value of 1. This might be due to the high cost of facilities compared to the scale of the project. However, considering the overall environmental value of improving the water environment and air quality by the installation of LID facilities and the publicity of reducing the operating cost of sewage treatment facilities, the introduction of a prior consultation for small-scale development projects is inevitable. In the future, institutional and financial support from local governments is required to improve the cost-benefits with the introduction of a prior consultation for small-scale development projects.