• Title/Summary/Keyword: 유체-구조 연성해석

Search Result 178, Processing Time 0.021 seconds

The study of data transfer method non-matching meshes interface using common-refinement method for fluid-structure interface (유체-구조 연성 해석을 위한 common-refinement 기반 불일치 격자 경계면에서의 정보 전달 기법 연구)

  • Han, Sangho;Kim, Donghyun;Lee, Changsoo;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • During multi-physics or multi-phase simulations accompanying fluid- structure- thermal interaction, data transfer problems always arise along non- matching interfaces caused by different computational meshes for each physical domain. Common- refinement scheme, among many available methods, is attractive since it is known to yield conservative and accurate data transfer for non- matching interface cases. This is particularly important in simulating compressible unsteady fluid- structure- thermal interaction inside solid propellant rockets, where grid size along solid- fluid interfaces is substantially different. From this perspective, we examine performances of common- refinement- based data transfer scheme between structured quadrilateral (structure part) and unstructured triangular (fluid part) meshes by comparing computed results with other data transfer methods.

Design of a 2MW Blade for Wind Turbine and Uni-Directional Fluid Structure Interaction Simulation (2 MW급 풍력터빈 블레이드 설계 및 단방향 유체-구조연성해석)

  • Kim, Bum-Suk;Lee, Kang-Su;Kim, Mann-Eung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.1007-1013
    • /
    • 2009
  • The purposes of this study are to evaluate the power performance through CFD analysis and structural integrity through uni-directional FSI analysis in aerodynamic design and structure design of wind turbine blade. The blade was designed to generate the power of 2MW under the rated wind speed of 11 m/s, consisting of NACA 6 series, DU series and FFA series airfoil. The inside section of the blade was designed into D-spar structure and circular stiffener was placed to reinforce the structural strength in the part of hub. CFD analysis with the application of transitional turbulence model was performed to evaluate the power performance of blade according to the change of TSR and 2.024MW resulted under the condition of rated wind speed. TSR of 9 produced the maximum power coefficient and in this case, Cp was 0.494. This study applied uni-directional FSI analysis for more precise evaluation of structural integrity of blade, and the results of fiber failure, inter fiber failure and eigenvalue buckling analysis were evaluated, respectively. For the evaluation, Puck's failure criteria was applied and the result showed that fiber failure and inter fiber failure did not occur under every possible condition of the analysis. As a result, power performance and structural integrity of 2 MW blade designed in this study turned out to satisfy the initial design goals.

Finite Element Analysis for Acoustic Characteristics of Piezoelectric Underwater Acoustic Sensors (압전 수중음향센서 음향특성의 유한요소해석)

  • 김재환;손선봉;조철희;조치영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.68-76
    • /
    • 2001
  • Sonar is the system that detects objects and finds their location in water by using the echo ranging technique. In order to have excellent performance in variable environment, acoustic characteristics of this system must be analyzed accurately. In this paper, based on the finite element analysis, modeling and analysis of acoustic characteristics of underwater acoustic sensors are preformed. Couplings between piezoelectric and elastic materials, and fluid and structure systems associated with the modeling of piezoelectric underwater acoustic sensors are formulated. In the finite element modeling of unbounded acoustic fluid, IWEE (Infinite Eave Envelop Element) is adopted to take into account the infinite domain. When an incidence wave excites the surface of Tonpilz underwater acoustic sensor, the scattered wave on the sensor is founded by satisfying the radiation condition at the artificial boundary approximately. Based on this scattering analysis, the electrical response of the underwater acoustic sensor under incidence, so called RVS (Receiving Voltage Signal) is founded accurately. This will devote to design Sonar systems accurately.

  • PDF

Forced Vibration and Structural Response Prediction for Impeller in Resonant Conditions due to Diffuser Vanes (디퓨저 베인에 기인한 공진조건에서의 임펠러 강제진동 및 구조응답 예측)

  • Kim, Yongse;Kong, Dongjae;Shin, SangJoon;Park, Kihoon;Im, Kangsoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.24-35
    • /
    • 2018
  • Impeller blades in the centrifugal compressor are subjected to periodic aerodynamic excitations by interactions between the impeller and the diffuser vanes (DV) in resonant conditions. This may cause high cycle fatigue (HCF) and eventually result in failure of the blades. In order to predict the structural response accurately, the aerodynamic excitation and the major resonant conditions were predicted using unsteady computational fluid dynamics (CFD) and structural analysis. Then, a forced vibration analysis was performed by going through one-way fluid-structure interaction (FSI). A numerical analysis procedure was established to evaluate the structural safety with respect to HCF. The numerical analysis procedure proposed in this paper is expected to contribute toward preventing HCF problems in the initial design stage of an impeller.

Effect of the Leading Edge and Vein Elasticity on Aerodynamic Performance of Flapping-Wing Micro Air Vehicles (날갯짓 초소형 비행체의 앞전 및 시맥 탄성이 공력 성능에 미치는 영향)

  • Yoon, Sang-Hoon;Cho, Haeseong;Shin, Sang-Joon;Huh, Seokhaeng;Koo, Jeehoon;Ryu, Jaekwan;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.185-195
    • /
    • 2021
  • The flapping-wing micro air vehicle (FW-MAV) in this study utilizes the cambered wings made of quite flexible material. Similar to the flying creatures, the present cambered wing uses three different materials at its leading edge, vein, and membrane. And it is constrained in various conditions. Since passive rotation uses the flexible nature of the wing, it is important to select an appropriate material for a wing. A three-dimensional fluid-structure interaction solver is developed for a realistic modeling of the cambered wing. Then a parametric study is conducted to evaluate the aerodynamic performance in terms of the elastic modulus of leading edge and vein. Consequently, the elastic modulus plays a key role in enhancing the aerodynamic performance of FW-MAVs.

Sloshing Analysis of a Simple Tank using Fluid-structure Interface Method (유체-구조 연성 방법에 의한 단순 탱크 슬로싱 해석)

  • Kang, Sung-Jong;Seo, Hong-Jae;Kim, Byung-Joo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.31-37
    • /
    • 2011
  • Fuel tank sloshing noise of vehicle is caused by flow impact on the tank wall during sudden braking, and the sloshing vibration of tank wall is a coupled phenomenon of the fuel inside tank and tank wall structure. Therefore, Fluid-Structure Interface(FSI) analysis technology should be adopted to predict accurately the sloshing vibration. In this study, FSI approach was employed to analyze sloshing phenomenon for a simple tank model with velocity change of the actual vehicle test. First, the simulated results for rigid tank model were compared with those for deformable tank model. Next, influence of baffle location and shape of baffle holes on the acceleration magnitude and the maximum stress of tank wall was investigated. In addition, sloshing analysis for tank with another baffle type was carried out.

An FSI Simulation of the Metal Panel Deflection in a Shock Tube Using Illinois Rocstar Simulation Suite (일리노이 록스타 해석환경을 활용한 충격파관 내 금속패널 변형의 유체·구조 연성 해석)

  • Shin, Jung Hun;Sa, Jeong Hwan;Kim, Han Gi;Cho, Keum Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.361-366
    • /
    • 2017
  • As the recent development of computing architecture and application software technology, real world simulation, which is the ultimate destination of computer simulation, is emerging as a practical issue in several research sectors. In this paper, metal plate motion in a square shock tube for small time interval was calculated using a supercomputing-based fluid-structure-combustion multi-physics simulation tool called Illinois Rocstar, developed in a US national R amp; D program at the University of Illinois. Afterwards, the simulation results were compared with those from experiments. The coupled solvers for unsteady compressible fluid dynamics and for structural analysis were based on the finite volume structured grid system and the large deformation linear elastic model, respectively. In addition, a strong correlation between calculation and experiment was shown, probably because of the predictor-corrector time-integration scheme framework. In the future, additional validation studies and code improvements for higher accuracy will be conducted to obtain a reliable open-source software research tool.

Coupled Vibration Analysis of Cylindrical Fluid-storage Tanks with a Baffle (배플을 갖는 원통형 유체저장 탱크의 연성진동해석)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.96-104
    • /
    • 2005
  • The coupled vibration characteristics for the fluid-structure interaction systems are investigated through the finite element method. The present paper is focused on vibration characteristics of the cylindrical fluid-storage tank with a baffle. The tank is partially filled with an inviscid and irrotational fluid having a free surface. A baffle is assumed here to have the shape of a thin annular plate and a conical shell, attached to the cylindrical tank and positioned below the fluid surface. The liquid domain is limited by a rigid flat bottom. As the effect of free surface waves is taken into account in the analysis, the bulging and sloshing modes are studied. To demonstrate the validity of present results, they are compared with the published ones. The effect of positions and inner-to-outer radius ratio of annular baffle and setting angles of conical baffle on coupled vibration characteristics is investigated.

Direct forcing/fictitious domain-Level set method for two-phase flow-structure interaction (이상 유동에서의 유체-구조 연성해석을 위한 Direct Forcing/Ficititious Domain-Level Set Method)

  • Jeon, Chung-Ho;Yoon, Hyun-Sik;Jung, Jae-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.36-41
    • /
    • 2011
  • In the present paper, a direct forcing/fictitious domain (DF/FD) level set method is proposed to simulate the FSI (fluid-solid interaction) in two-phase flow. The main idea is to combine the direct-forcing/fictitious domain (DF/FD) method with the level set method in the Cartesian coordinates. The DF/FD method is a non-Lagrange-multiplier version of a distributed Lagrange multiplier/fictitious domain (DLM/FD) method. This method does not sacrifice the accuracy and robustness by employing a discrete ${\delta}$ (Dirac delta) function to transfer quantities between the Eulerian nodes and Lagrangian points explicitly as the immersed boundary method. The advantages of this approach are the simple concept, easy implementation, and utilization of the original governing equation without modification. Simulations of various water-entry problems have been conducted to validate the capability and accuracy of the present method in solving the FSI in two-phase flow. Consequently, the present results are found to be in good agreement with those of previous studies.

Thermal Stress Analysis and Flow Characteristics of a Bellows-Seal Valve for High Pressure and Temperature (고온.고압용 벨로우즈 실 밸브의 유동 특성 및 열응력 해석)

  • Kim, Kwang-Su;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.6 s.33
    • /
    • pp.40-46
    • /
    • 2005
  • Because of design and manufacturing costs, it is important to predict an expected life of bellows with component stresses of bellows as its design factors and material characteristics. In this study, numerical analyses are carried out to elucidate the thermal and flow characteristics of the bellows-seal gate and globe valves for high temperature (max. $600^{\circ}C$) and for high pressure (max. $104 kgf/cm^2$) conditions. Using commercial codes, FLUENT, which uses FVM and SIMPLE algorithm, and ANSYS, which uses FEM, the pressure and temperature fields are graphically depicted. In addition, when bellows have an axial displacement, thermal stress affecting bellows life is studied. The pressure and temperature values obtained from the flow analyses are adopted as the boundary conditions for thermal stress analyses. As the result of this study, we got the reasonable coefficients for valve and thermal stress for bellows, compared with existing coefficients and calculated values.