• Title/Summary/Keyword: 유체 체적법

Search Result 131, Processing Time 0.025 seconds

NAVIER-STOKES SIMULATION OF A MICRO-VISCOUS PUMP (초소형 점성 펌프의 Wavier-Stokes 해석)

  • Kang, D.J.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.75-80
    • /
    • 2006
  • Navier-Stokes simulation of the flow in a micro viscous pump is carried out. The micro viscous pump consists of a rotating circular rotor placed in a two dimensional channel. All simulation is carried out by using a finite volume approach, at the Reynolds number of 0.5, to study the performance of the micro viscous pump. Length of channel of the pump is varied to simulate the effects of the pumping load. Numerical solutions show that the net flow of the pump is realized by two counter rotating vortices formed on both sides of the rotor. The volume flow rate of the pump is decreased as length of the channel is increased, while the static pressure difference across the rotor is increased. The static pressure difference across the rotor is observed to be inversely proportional to the volume flow rate as inertia effects are negligibly small. The efficiency of the pump is found to reach a maximum when two counter rotating vortices on both sides of the rotor becomes to merge forming an outer enveloping vortex.

Development of Simplified Immersed Boundary Method for Analysis of Movable Structures (가동물체형 구조물 해석을 위한 Simplified Immersed Boundary법의 개발)

  • Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.93-100
    • /
    • 2021
  • Since the IB (Immersed Boundary) method, which can perform coupling analysis with objects and fluids having an impermeable boundary of arbitrary shape on a fixed grid system, has been developed, the IB method in various CFD models is increasing. The representative IB methods are the directing-forcing method and the ghost cell method. The directing-forcing type method numerically satisfies the boundary condition from the fluid force calculated at the boundary surface of the structure, and the ghost-cell type method is a computational method that satisfies the boundary condition through interpolation by placing a virtual cell inside the obstacle. These IB methods have a disadvantage in that the computational algorithm is complex. In this study, the simplified immersed boundary (SIB) method enables the analysis of temporary structures on a fixed grid system and is easy to expand to three proposed dimensions. The SIB method proposed in this study is based on a one-field model for immiscible two-phase fluid that assumes that the density function of each phase moves with the center of local mass. In addition, the volume-weighted average method using the density function of the solid was applied to handle moving solid structures, and the CIP method was applied to the advection calculation to prevent numerical diffusion. To examine the analysis performance of the proposed SIB method, a numerical simulation was performed on an object falling to the free water surface. The numerical analysis result reproduced the object falling to the free water surface well.

Numerical modeling of impulse wave (수면 충격파의 수치모의)

  • Paik, Joongcheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.44-44
    • /
    • 2015
  • 저수지나 하천 사면에서 발생하는 산사태와 토석류는 저수지와 하천 수체에 충격을 가한다. 이로 인해 발생하는 수면 충격파는 전파되어 반대편 제방으로 파의 처오름 또는 댐 제체위로의 물넘이로 큰 피해를 줄 수 있다. 최근 외국에서는 2차원 충격파 생성 및 전파의 기본 과정을 구명하기 위한 실험적 연구가 이뤄지고 있으며, 이들 연구들은 충격파의 발생과 전파, 사면활동 물질과 수체의 상호작용 그리고 자유 수면과 유속분표의 발달에 대한 자세한 관측 자료를 제시하고 있다. 아울러 충격파에 영향을 주는 지배 매개변수를 제시하고 있다. 하지만, 이러한 실험적 연구의 최근 진보에도 불구하고, 이들 지배 매개변수를 고려한 충격파 지배공식들은 대상 지역의 복잡한 바닥 지형이나, 평면적 지형 변화를 단순한 추정치로만 고려하게 된다. 따라서 복잡한 지형조건에서 토석류와 수체의 상호작용과 수면 충격파의 전파를 합리적으로 해석하는 데는 한계가 있다. 이 경우 수치모델링 기법을 대안으로 적용할 수 있으나, 수치모델링은 수면에서 충격파의 전파와 수중에서 토석류의 전파를 동시에 모의해야 하고, 뉴턴 유체와 비뉴턴 유체의 특성을 동시에 고려해야하므로 수치해석 연구자들에게는 하나의 큰 도전사항이다. 이 연구는 경계면 포착기법을 이용한 계산유체동력학 기법을 이용하여 사면활동과 이로 인한 정지 수역에서의 충격파의 발생 및 전파를 재현하기 위한 수치 모델링 기법을 개발하는 것이 목적이다. 사면활동과 수면의 경계면을 포착하고 위치를 정립하기 위해서 VOF (volume of fluid) 경계면 재구축 기법을 이용한다. 지배 방정식은 비압축성(incompressible) 질량 보존방정식과 나비어-스톡스(Navier-Stokes) 방정식이며, 서로 다른 유체의 상(phase)애 대한 체적분할이송방정식을 이용한다. 큰와 모의 계열의 난류 모델링 기법을 적용하여 충격파의 전파와 붕괴에 대한 난류의 영향을 고려하였다. 토석류는 비뉴턴 흐름저항 관계식을 적용하여 그 흐름특성을 재현하였다. 이들 지배방정식은 2차 정확도의 유한체적법(finite volume method)을 이용하여 해석한다. 외국의 연구자들이 관측하여 제시한 길이 11 m 그리고 폭 0.5 m의 수로에서 발생한 충격파를 수치적으로 재현하여 개발된 모형의 실제 문제에 대한 적용성을 보여준다.

  • PDF

Analysis of Flow Field Including Bodies Steadily Moving Around the Free-surface by FLUENT-VOF Method (FLUENT-VOF법을 이용한 자유수면 부근을 정속으로 움직이는 물체주위 유동해석)

  • Kim, Tae-Yoon;Hyun, Beom-Soo
    • Journal of Navigation and Port Research
    • /
    • v.32 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • VOF method is known as one of the most effective numerical techniques handling two-fluid domains of different density simultaneously. Present study deals with the numerical analysis of flow field around bodies steadily moving near free-surface using FLUENT-VOF method. Validations were made by applying to three typical examples ; 2-D submerged hydrofoil, 3-D surface piercing body and container ship. It was found that the commercial software, FLUENT, is useful in practical use, and VOF method is capable of handling free-surface around moving bodies although discussions are limited to the analysis in qualitative sense.

Optimization of an Annular Fin with a Pipe of Variable Inner Radius for Fixed Fin Volume (고정된 휜 체적에 기준한 원관 내부반경이 변하는 환형 휜의 최적화)

  • Kang, Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.229-235
    • /
    • 2010
  • Optimum values of fin performance and dimensions for an annular fin with a rectangular profile and a pipe with variable inner radius are determined by using a variable separation method. The range of ambient convection characteristic number that results in optimum heat loss is listed. The optimum heat loss, corresponding optimum fin effectiveness, fin length, and fin height are presented as a function of the inner radius of the pipe, inner fluid convection characteristic number, fin volume, and ambient convection characteristic number. One of the results shows that the optimum heat loss, fin effectiveness and fin length increase linearly with the inner radius of the pipe when both the fin volume and fin-base radius are fixed.

Numerical Simulation of Turbulent Flows in Inlet Duct of Heat Recovery Steam Generator (배열회수 안내덕트 내부의 난류유동 수치시뮬레이션)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.809-813
    • /
    • 2011
  • Turbulent flows are numerically simulated in the three dimensional inlet duct for heat recovery steam generator. The present study is aimed to analyze the effect of a variation in turbulent flow pattern by the change of roof angle in the transition duct. The finite volume based Navier-Stokes equations with unstructured grids are solved to make clear the flow dynamic phenomena. Reviews are made on with the data of path lines, velocity vectors, dynamic pressure, residuals for numerical convergence and so on. The k-epsilon, k-omega, Reynolds stress and RNG k-epsilon are used for generation of turbulence. Two types of roof angle are applied with and without the swirl in the duct. Turbulent flow patterns could be investigated for the optimum duct design based on the computational results.

DEVELOPMENT OF GENERAL PURPOSE THERMO/FLUID FLOW ANALYSIS PROGRAM NUFLEX (범용 열/유체 유동해석 프로그램 NUFLEX의 개발)

  • Hur, Nahm-Keon;Won, Chan-Shik;Ryou, Hong-Sun;Son, Gi-Hun;Kim, Sa-Ryang
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.8-13
    • /
    • 2007
  • A general purpose program NUFLEX for the analysis 3-D thermo/fluid flow and pre/post processor in complex geometry has been developed, which consists of a flow solver based on FVM and GUI based pre/post processor. The solver employs a general non-orthogonal grid system with structured grid and solves laminar and turbulent flows with standard/RNG $k-{\varepsilon}$ turbulence model. In addition, NUFLEX is incorporated with various physical models, such as interfacial tracking, cavitation, MHD, melting/solidification and spray models. For the purpose of evaluation of the program and testing the applicability, many actual problems are solved and compared with the available data. Comparison of the results with that by STAR-CD or FLUENT program has been also made for the same flow configuration and grid structure to test the validity of NUFLEX.

DEVELOPMENT OF GENERAL PURPOSE THERMO/FLUID FLOW ANALYSIS PROGRAM NUFLEX (범용 열/유체 유동해석 프로그램 NUFLEX의 개발)

  • Hur, Nahm-Keon;Won, Chan-Shik;Ryou, Hong-Sun;Son, Gi-Hun;Kim, Sa-Ryang
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.87-90
    • /
    • 2007
  • A general purpose program NUFLEX for the analysis 3-D thermo/fluid flow and pre/post processor in complex geometry has been developed, which consists of a flow solver based on FVM and GUI based pre/post processor. The solver employs a general non-orthogonal grid system with structured grid and solves laminar and turbulent flows with standard/RNG ${\kappa}-{\varepsilon}\;SST$ turbulence model. In addition, NUFLEX is incorporated with various physical models, such as interfacial tracking, cavitation, MHD, melting/solidification and spray model. For the purpose of verification of the program and testing the applicability, many actual problems are solved and compared with the available data. Comparison of the results with that by STAR-CD or FLUENT program has been also made for the same flow configuration and grid structure to test the validity of NUFLEX.

  • PDF

Air Compressibility Effect in CFD-based Water Impact Analysis (CFD 기반 유체충격 해석에서 공기 압축성 효과)

  • Tran, Huu Phi;Ahn, Hyung-Taek
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.581-591
    • /
    • 2011
  • This paper describes the air compressibility effect in the CFD simulation of water impact load prediction. In order to consider the air compressibility effect, two sets of governing equations are employed, namely the incompressible Navier-stokes equations and compressible Navier-Stokes equations that describe general compressible gas flow. In order to describe violent motion of free surface, volume-of-fluid method is utilized. The role of air compressibility is presented by the comparative study of water impact load obtained from two different air models, i.e. the compressible and incompressible air. For both cases, water is considered as incompressible media. Compressible air model shows oscillatory behavior of pressure on the solid surface that may attribute to the air-cushion effect. Incompressible air model showed no such oscillatory behavior in the pressure history. This study also showed that the CFD simulation can capture the formation of air pockets enclosed by water and solid surface, which may be the location where the air compressibility effect is dominant.

A Study on Fluid Flow in the Intake Manifold for an Engine (엔진 흡기관내의 유체유동에 관한 연구)

  • 성낙원;이응석;강건용;엄종호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.295-307
    • /
    • 1988
  • In order to predict performance of the intake manifold, which is dependent on the length and diameter of a resonance pipe, the Fluid Dynamic Model for 4-cylinder diesel engine is developed using two step Lax-Wendroff method to solve the governing equations of air flow in the intake system. Boundary conditions at the intake valve, branch at the manifolds, and pipe end are also modeled. The results of the models are compared with the experimental results of a motored engine. The model is capable of predicting the real phenomena satisfactorily with reasonable computing time.