• Title/Summary/Keyword: 유체공학

Search Result 2,699, Processing Time 0.03 seconds

Sonoporation with echogenic liposome: therapeutic effect on a breast cancer cell (약물이 탑재된 미소기포와 결합된 sonoporation: 유방암세포에 대한 치료효과)

  • Park, Juhyun;Lee, Hana;Lee, Yougyeong;Seo, Jongbum
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.501-506
    • /
    • 2022
  • Echogenic liposome contains both liquid and gas inside the shell. In ultrasound mediated drug delivery, sonoporation, these new microbubbles can be an attractive drug carrier since they can be loaded water soluble drugs and drug molecules can be unloaded at the specific location with ultrasound sonication. In this paper, the structure of the echogenic liposome was confirmed with EF-TEM and the positive effect of sonoporation with echogenic liposome was comparatively evaluated on MDA-MB-231 cells which is a type of breast cancer cell with Doxorubicin. Control group (Group 1), Doxorubicin only (Group 2), sonoporation with Doxorubicin and hollow microbubbles (Group 3), sonoporation with Doxorubicin loaded echogenic liposome (Group 4) were classified and experiments were conducted. According to the results, Group 4 is at least 1.4 times better in inducing necrosis of cancer cells. Therefore, we conclude echogenic liposome could be one of the most useful form of microbubbles in sonoporation.

A Study on the Manoeuvrability of 1/42.0 Scaled KCS (1/42.0 KCS 모형선의 조종성능에 관한 연구)

  • Yun, Kunhang;Kim, Dong Jin;Yeon, SeongMo;Kim, Yoo-Chul;Kim, Yeon Gyu;Yang, Kyung-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.262-270
    • /
    • 2022
  • The emergence of new concept ships, such as autonomous ships, has drawn much attention on the manoeuvrability of ships because of the safe navigation and operation of ships. Although the manoeuvrability of KRISO Container Ship(KCS) has been frequently reported, there have been few documents of representative manoeuvre cases conducted in various methods by one institute. This paper presents the manoeuvrability of the ship in 1/42.0 model scale by 3 methods: free running model tests, horizontal planar motion mechanism tests, and computational fluid dynamics analysis. KRISO reports KCS manoeuvre data: 35° turning circle tests and 20/20(10/10) zigzag manoeuvring tests. In addition, a simple formula for integrating and comparing manoeuvre indices, Manoeuvrability Comparing Simple Index(MCSI), is proposed.

Experimental Investigation on Water Hammer Phenomenon in the Recirculation Line of a Liquid Rocket Engine (액체로켓엔진 재순환 유로에서의 수격현상에 관한 실험적 연구)

  • Kim, Bokyem;Hong, Moongeun;Lee, Jisung;Kim, Junghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.110-118
    • /
    • 2021
  • In a liquid rocket engine system, the flow of oxidizer into the combustion chamber is controlled by the main oxidizer shut-off valve. When the valve is closed, the oxidizer flows via the recirculation line, not into the combustion chamber. In this situation, the measured pressure could be much higher than a design value because of the water hammer phenomenon. In this paper, the experiments on the water hammer in the recirculation line with different initial conditions were conducted in order to study the pressure wave produced in each case. According to the experimental results, characteristics of the pressure wave in the recirculation line depend on the initial condition. To be specific, the pressure surge is maximized in case that the shock is condensation-oriented in the end of the recirculation line.

Prediction of Rolling Moment for a Hand-Launched UAV Considering the Interference Effect of Propeller Wake (프로펠러 후류 간섭 효과를 고려한 투척식 무인기 롤 모멘트 예측)

  • Sang-Mann, Woo;Dong-Hyun, Kim;Ji-Min, Park
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.114-122
    • /
    • 2022
  • This paper explores three-dimensional unsteady computational fluid dynamic (CFD) analyses with an overset grid technique to analyse the wake effect created by a rotating propeller on a hand-launched unmanned aerial vehicle (UAV). Additionally, the influence of actual aileron deflection on the equilibrium condition of the rolling moment is examined in various hand-launched take-off conditions. The results of this study demonstrate the importance of initial aileron deflection in increasing the initial rolling stability during the hand-launched take-off process. Furthermore, an aerodynamic database is constructed to rapidly predict the aileron set values required for different take-off speeds and angle-of-attacks.

Design and Pressure Loss Evaluation of Vacuum Brazed Cooling Passage for Full Authority Digital Engine Control (항공기용 엔진제어기의 진공 브레이징 냉각유로 설계 및 압력손실 평가)

  • Han, Myeongjae;Seol, Jinwoon;Jeong, Seungho;Cha, Minkyung;Jang, Hoyoun;Kim, Junghoe
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.72-78
    • /
    • 2022
  • A vacuum brazed cooling passage for an aircraft engine controller was designed. In order to predict the total pressure loss, which is the main design factor of the cooling passage, theoretical and numerical methods for the major loss and the minor loss considering the overall shape of the cooling passage are presented. This design and evaluation method can predict the pressure loss of the complex cooling passage shape for various flow conditions at the initial design step.

Development of Static Seal for a Liquid Rocket Engine (액체 로켓 엔진 스태틱 실 개발)

  • Jeon, Seong Min;Yoon, Suk-Hwan;Chung, Taegeum
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • Static seals are used to seal high temperature gas and cryogenic fluid under high pressure, at interfaces between liquid rocket engine components such as combustion chamber, turbopump, gas generator, valves, etc. As thermal expansion and contraction at assembly interfaces cause undesirable leakage under cryogenic and high temperature environments, static seals applied for sealing of joint interfaces without relative motion should be designed properly. The additional function of rotation at the sealing face is also required for static seals, when the spherical flange is used for improvement of assembly at misalignment interfaces. In this study, structural analysis and leak tightness test of simulating test rig for several important interfaces are performed, to verify structural integrity of static seals.

Numerical Simulation for Improvement in Resistance Performance by Bulb Retrofit under Optimal Trim Conditions (최적 트림 조건하에서 벌브개조를 통한 선박저항성능 개선 연구)

  • Park, Hyunsuk;Seo, Dae-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1070-1077
    • /
    • 2022
  • The International Maritime Organization has recently strengthened its marine environment regulations. The energy efficiency index has long been an important indicator of ship design, and now, energy efficiency is being enforced for existing ships as well as new ships. To increase the energy efficiency of existing ships, methods such as retrofitting the bow bulb, selecting an optimized trim during ship operation, and installing an energy saving device have been applied. In this study, the ship resistance was numerically simulated using computational fluid dynamics (CFD) under various bow and stern trim conditions. In addition, the bulb was redesigned to further improve the resistance performance under the selected trim conditions. When the improved bulb was applied, the effective horse power increased by approximately 5%. It is, however, necessary to verify whether the redesigned bulb can reduce ship resistance in waves.

A study on the underwater energy harvesting characteristics of a funnel type macro fiber composite energy harvester (수중에서 퍼넬형 macro fiber composite 에너지 하베스터의 에너지 수확 특성)

  • Jongkil Lee;Jinhyo An
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.57-66
    • /
    • 2023
  • In this paper, it was investigated how the amount of energy harvesting will be varied from the FTEH which has inlet area is wider than outer area and attaching cantilever type MFC (Macro Fiber Composite) using by theoretical and experimental approaches. When MFC length increased 50 % vibration displacement also increased 3.5 times. When thickness decreased vibration displacement increased 30.9 times. In underwater tank experiments FTEH with spiral screw, flexible support, vertical direction fabrication cases showed maximum energy harvesting more 5 times than the case of MFC installed horizontally without spiral screws and on rigid supports. When the flow speed of 0.24 m/s FTEH's optimal resistance applied 4,10 kΩ, energy storage in the capacitor was measured 4 ㎼·s during 350 seconds. It was confirmed that the charging energy can be increased by lengthening the capacitor charging time of the large-area MFC installed vertically on the flexible support at high flow speed.

THD Lubrication Analysis of a Surface-Textured Parallel Thrust Bearing with Rectangular Grooves: Part 2 - Effect of Groove Depth (사각형 그루브로 Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 제2보 - 그루브 깊이의 영향)

  • TaeJo Park;JeongGuk Kang
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.21-27
    • /
    • 2023
  • Surface texturing is widely applied to friction surfaces of various machine elements. Most of the theoretical studies have focused on isothermal (ISO) analyses which consider constant lubricant viscosity. However, there have been limited studies on the effect of oil temperature increase owing to viscous shear. Following the first part of the present study that investigated the effects of film-temperature boundary condition (FTBC) and groove number on the thermohydrodynamic (THD) lubrication characteristics of a surface-textured parallel thrust bearing with multiple rectangular grooves, this study focuses on the effect of groove depths. Current study numerically analyzes the continuity, Navier-Stokes, and energy equations with temperature-viscosity-density relations using a commercial computational fluid dynamics (CFD) software, FLUENT. The results of variation in temperature, velocity, and pressure distributions as well as load-carrying capacity (LCC) and friction force indicate that groove depth and FTBC significantly influence the temperature distribution and pressure generation. The LCC is maximum near the groove depth at which the vortex starts, smaller than the ISO result. For intense grooves, the LCC of THD may be larger than that from ISO. The frictional force decreases as the groove becomes deeper, and decreases more significantly in the case of THD. The study shows that groove depth significantly influences the THD lubrication characteristics of surface-textured parallel thrust bearings.

Recovery of Valuable Lithium Hydroxide by Ion Exchange Process: A Review (이온 교환 공정에 의한 귀중한 수산화 리튬의 회수: 리뷰)

  • Sarsenbek, Assel;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.401-410
    • /
    • 2022
  • Demand for lithium hydroxide (LiOH) is annually increasing due to its efficiency and safety for the environment in comparison to its current alternatives. Lithium can be found in different salty and brine lakes which later synthesized to produce LiOH for various applications. Different methods are used to separate and recover lithium ions, the most common of which is electrodialysis (ED). ED is a membrane-based separation technique which works on potential difference of its layers as a driving force to push ions from one side to another. The ion exchange membrane (IEM) in ED makes the process efficient because of the perm selectivity of different ions vary depending on their hydrodynamic volume. In this review, the different alteration strategies of both ED and IEM, to enhance the recovery of lithium ions are discussed.