• 제목/요약/키워드: 유전자 분류

검색결과 744건 처리시간 0.028초

종양 분류를 위한 마이크로어레이 데이터 분류 모델 설계와 구현 (The Design and Implement of Microarry Data Classification Model for Tumor Classification)

  • 박수영;정채영
    • 한국정보통신학회논문지
    • /
    • 제11권10호
    • /
    • pp.1924-1929
    • /
    • 2007
  • 오늘날 인간 프로젝트와 같은 종합적 인 연구의 궁극적 목적을 달성하기 위해서는 이 들 연구로부터 획득한 대량의 관련 데이터에 대해 새로운 현실적 의미를 부여할 수 있어야 한다. 마이크로어레이를 기반으로 하는 종양 분류 방법은 종양 종류에 따라 다르게 발현되는 유전자 양상을 통계적으로 발견함으로써 정확한 종양 분류에 기여 할 수 있다. 따라서 현재의 마이크로어레이 기술을 이용해서 효과적으로 종양을 분류하기 위해서는 특정 종양 분류와 밀접하게 관련이 있는 정보력 있는 유전자를 선택하는 과정이 필수적이다. 본 논문에서는 암에 걸린 흰쥐 외피 기간 세포 분화 실험에서 얻어진 3840 유전자의 마이크로어레이 cDNA를 이용해 데이터의 정규화를 거쳐 정보력 있는 유전자 목록을 별도로 추출하여 보다 정확한 종양 분류 모델을 구축하고 각각의 실험 결과들을 비교 분석함으로써 성능평가를 하였다. 피어슨 적률 상관 계수를 이용하여 선택된 유전자들을 멀티퍼셉트론 분류기로 분류한 결과 98.6%의 정확도를 보였다.

mRMR과 수정된 입자군집화 방법을 이용한 다범주 분류를 위한 최적유전자집단 구성 (A hybrid method to compose an optimal gene set for multi-class classification using mRMR and modified particle swarm optimization)

  • 이선호
    • 응용통계연구
    • /
    • 제33권6호
    • /
    • pp.683-696
    • /
    • 2020
  • 표본의 다범주 표현형을 예측하는데 사용되는 최적의 유전자집단이란 적은 수의 유전자로 표현형을 정확히 예측할 수 있는 유전자들의 모임이다. 특이발현유전자를 검색하는 통계량은 이미 여러 가지가 있고, K-평균 군집화를 곁들여 중복성이 적은 특이발현유전자들을 선택 가능하다. 이들을 바탕으로 적은 수로 정확하게 다범주 분류가 가능한 유전자집단을 구성할 수 있도록 수정한 입자최적화 방법을 제안한다. 널리 알려진 ALL 248례와 SRBCT 83례를 이용하여 제안된 방법으로 최적유전자집단을 찾을 수 있음을 보였다.

순위 비교를 기반으로 하는 다양한 유전자 개수로 이루어진 암 분류 결정 규칙의 생성 (Generating Rank-Comparison Decision Rules with Variable Number of Genes for Cancer Classification)

  • 윤영미;변상재;박상현
    • 정보처리학회논문지D
    • /
    • 제15D권6호
    • /
    • pp.767-776
    • /
    • 2008
  • 마이크로어레이 기술은 최근 실험적 분자생물학 분야에서 활발히 사용되고 있는 기술이다. 마이크로어레이 데이터는 한 번의 실험으로 수 만개의 유전자에 대한 발현값을 얻을 수 있으므로, 여러 질병의 발현형질을 연구하는데 매우 유용하게 사용된다. 마이크로어레이 데이터의 문제점은 참여하는 유전자의 수에 비해 참여하는 샘플(생물조직샘플)의 수가 매우 적고, 분류분석 기법을 사용하여 얻어진 분류자의 해석이 어렵다는 점이다. 본 연구에서는 위의 문제점을 해결하고자, 샘플 내 순위를 이용하여 동일한 생물학적 목적으로 수행된 공개 마이크로어레이 데이터를 통합하고, 순위 비교를 기반으로 하는 다양한 유전자 개수로 이루어진 암 분류 결정 규칙들로 이루어진 분류자를 제안한다. 본 분류자는 k개의 규칙으로 이루어진 앙상블 방법을 기반으로 하며, 하나의 규칙은 최대N개의 유전자, 관련유전자간의 순위비교 관계식, 판별클래스로 이루어져 있다. 하나의 규칙에 참여하는 유전자의 수를 다양하게 함으로써 좀더 신뢰성 높은 분류자를 생성할 수 있다. 또한 본 분류자는 생물학적 해석이용이하며, 분류자를 구성하는 유전자를 명확히 식별할 수 있고, 총 개수가 많지 않으므로 임상환경에서의 사용가능성도 생각해 볼 수 있다.

분류 성능 향상을 위한 다양성 기반 앙상블 유전자 프로그래밍 (Diversity based Ensemble Genetic Programming for Improving Classification Performance)

  • 홍진혁;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권12호
    • /
    • pp.1229-1237
    • /
    • 2005
  • 분류 성능을 향상시키기 위해서 다수의 분류기들을 결합하는 연구가 활발히 진행되고 있다. 우수한 앙상블 분류기를 회득하기 위해서는 정확하고 다양한 개별 분류기를 구축해야 한다. 기존에는 Bagging이나 Boosting 등의 앙상블 학습 기법을 이용하거나 획득된 개별 분류기의 학습 데이타에 대한 다양성을 측정하였지만 유전 발현 데이타와 같이 학습 데이타가 적은 경우 한계가 있다. 본 논문에서는 유전자 프로그래밍으로부터 획득된 규칙의 구조적 다양성을 분석하여 결합하는 앙상블 기법을 제안한다. 유전자 프로그래밍으로 해석 가능한 분류 규칙을 생성하고 그들 사이의 다양성을 측정한 뒤, 이들 중 다양한 규칙의 집합을 결합하여 분류를 수행한다. 유전 발현 데이타로부터 림프종 암, 폐 암, 난소 암 등을 분류하는 문제를 대상으로 실험하여 제안하는 방법의 유용성을 검증하였다. 앙상블 시 분류 규칙 사이의 다양성을 분석하여 결합한 결과, 다양성을 고려하지 않을 때보다 높은 분류 성능을 획득하였고, 개별 분류 규칙들 사이의 다양성에 따라서 정분류율이 증가하는 것도 확인하였다.

생명정보학에서의 거대규모 특징추출을 위한 종분화 GA의 활용 (Applying Speciated GA to Huge-scale Feature Selection in Bioinformatics)

  • 황금성;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.229-231
    • /
    • 2002
  • 최근 생물 유전자 정보에 대한 관심이 커지면서 이를 위한 효과적인 분석 방법이 요구되고 있다. 특히, 분류기의 데이터로 사용하기 위해서 필요한 특징만을 뽑는 과정인 특징 추출은 대량의 유전자 정보에서 의미 있는 정보를 선별하는 중요한 과정이다. 그러나 유전자 정보는 사용되는 데이터의 특징규모가 매우 크기 때문에 일반적인 데이터 마이닝 기법으로는 분석이 힘들다. 본 논문에서는 효율적인 거대규모 특징 추출을 위해 유전자 알고리즘(GA)파 신경망을 사용한 특징추출 방법을 소개하고, 종분화 기법을 사용한 효과적인 특징추출 방법을 제시한다. 그리고, CAMDA 2000에 공개된 암 DNA Microarray로 안종류를 분류하는 문제에 대하여 성능을 평가하였다.

  • PDF

유전자 알고리즘 및 국소 적응 오퍼레이션 기반의 의료 진단 문제 자동화 기법 연구 (Medical Diagnosis Problem Solving Based on the Combination of Genetic Algorithms and Local Adaptive Operations)

  • 이기광;한창희
    • 지능정보연구
    • /
    • 제14권2호
    • /
    • pp.193-206
    • /
    • 2008
  • 의료 진단 문제는 기정의된 특성치들로 표현되는 환자의 상태 데이터로부터 병의 유무를 판단하는 일종의 분류 문제로 간주할 수 있다. 본 연구는 혼용 유전자 알고리즘 기반의 분류방법을 도입함으로써 의료 진단 문제와 같은 다차원의 패턴 분류 문제를 해결할 수 있는 방안을 제안하고 있다. 일반적으로 분류 문제는 데이터 패턴에 존재하는 여러 클래스 간 구분경계를 생성하는 접근방법을 사용하는데, 이를 위해 본 연구에서는 일단의 영역 에이전트들을 도입하여 이들을 유전자 알고리즘 및 국소 적응조작을 혼용함으로써 데이터 패턴에 적응하도록 유도하고 있다. 일반적인 유전자 알고리즘의 진화단계를 거친 에이전트들에 적용되는 국소 적응조작은 영역 에이전트의 확장, 회피 및 재배치로 이루어지며, 각 에이전트의 적합도에 따라 이들 중 하나가 선택되어 해당 에이전트에 적용된다. 제안된 의료 진단용 분류 방법은 UCI 데이터베이스에 있는 잘 알려진 의료 데이터, 즉 간, 당뇨, 유방암 관련 진단 문제에 적용하여 검증하였다. 그 결과, 기존의 대표적인 분류기법인 최단거리이웃방법(the nearest neighbor), C4.5 알고리즘에 의한 의사 결정트리(decision tree) 및 신경망보다 우수한 진단 수행도를 나타내었다.

  • PDF

림프종 암의 정확한 분류를 위한 산술연산자 분류규칙의 결합 (Ensemble of Classification Rules with Arithmetic Operators for the Accurate Classification of Lymphoma Cancer)

  • 홍진혁;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.202-204
    • /
    • 2004
  • 앙상블은 다수의 분류기를 효과적으로 결합하여 분류의 성능을 향상시키는 대표적인 기술이다. 효과적인 앙상블을 위해서는 다양한 특성을 지닌 분류기를 확보하여야 한다. 기존의 앙상블은 개별 분류기의 결과를 바탕으로 분류기 사이의 의존성이나 유사성을 평가하여 분류기 결합을 시도하였다. 따라서 분류기 사이의 유사도의 정확한 측정에 한계를 지니고 있다. 본 연구에서는 이를 극복하기 위해서 다수의 산술연산자 기반 분류규칙을 유전자 프로그래밍을 이용하여 획득하고, 실제 표현형의 유사성을 측정한 후 이를 바탕으로 분류기를 결합한다. 생물정보학에서 많이 사용되는 유전자 데이터 중 하나인 림포마 암 데이터에 제안하는 방법을 적용하여 97% 수준의 높은 분류 성능과 해석 가능한 분류규칙을 획득하였다.

  • PDF

데이터 마이닝의 분류 규칙 발견을 위한 유전자알고리즘 학습방법 (Genetics-Based Machine Learning for Generating Classification Rule in Data Mining)

  • 김대희;박상호
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 추계학술발표논문집
    • /
    • pp.429-434
    • /
    • 2001
  • 데이터(data)치 홍수와 정보의 빈곤이라는 환경에 처한 지금, 정보기술을 이용하여 데이터를 여과하고, 분석하며, 결과를 해석하는 자동화 된 데이터 분석 방안에 높은 관심을 가지게 되었으며, 데이터 마이닝(Data Mining))은 이러한 요구를 충족시키는 정보기술의 활용방법이다. 특히 데이터 마이닝(Data Mining)의 분류(Classification) 방법은 중요한 분야가 되고 있다. 분류 작업의 핵심은 어떻게 적당한 결정규칙(decision rule)을 정의하느냐에 달려 있는데 이를 위해 학습능력을 가지고 있는 알고리즘이 필요하다. 본 논문에서는 유전자 알고리즘(Genetic Algorithm)을 기반으로 하는 강건한 학습방법을 제시했으며, 이러한 학습을 통해 데이터 마이닝(Data Mining)의 분류시스템을 제안하였다.

  • PDF

클러스터링 기법을 통한 대사 네트웍의 진화적 분류 (Evolutionary Classification of Metabolic Networks by Hierarchical Clustering)

  • 오석준;정제균;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (1)
    • /
    • pp.226-228
    • /
    • 2002
  • 현재 유전자 서열 분석이 완료된 유전체들이 점점 늘어나고 있다. 따라서 이에 대한 방대한 정보가 생성됨에 따라 다양한 생물체들에 대하여 대사 네트웍을 통한 다차원적 분석이 가능하게 되었다. 대사 네트웍은 단백질 또는 효소들의 전체적인 상호작용을 표현하기 때문에 생물학적 메카니즘에 대하여 보다 풍부한 정보를 제공해 준다. 본 논문에서는 일차원적인 유전자 서열에 의한 종의 계통 분류가 아니라 메타 수준의 생리 구조적 비교를 통하여 계통분류학에 대하여 새로운 방법의 접근을 제안하고자 한다. 제안된 방법은 기존의 상동성 비교에 의한 계통 분류와 함께 좀 더 포괄적이고 거시적인 분석을 가능하게 한다.

  • PDF

종양 분류를 위한 특징 추출 및 분류 기법 (Feature Selection and Classification Methods for Tumor Classification)

  • 박윤정;이민수;박승수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.799-801
    • /
    • 2005
  • 현재 마이크로어레이 기술은 대량의 유전자 발현 데이터 특히 종양과 관련한 데이터들을 쏟아내고 있다. 이 데이터를 기반으로 종양의 종류에 따른 유전자들의 차별적 발현 양상을 분석하고 발현량의 변화가 두드러지는 유전자들에 기반하여 종양을 분별할 수 있는 분류 모델을 구축한 후, 이것을 종양을 진단하거나 예측하는데 이용할 수 있다. 대부분의 종양은 생성 매커니즘에 따라 세부 부류로 나눌 수 있고 세부 부류에 따라 치료 방법이나 예후가 달라지므로, 정확하게 종양의 세부 부류를 진단하는 것이 매우 중요하다. 본 논문에서는 종양의 종류에 따라 발현량이 민감하게 변화하는 유전자들을 뽑아내기 위한 특징 추출 방법들과 추출된 특징들에 기반해서 종양의 종류를 분별할 수 있는 기계학습 알고리즘들의 조합들의 성능을 비교분석 하였다.

  • PDF