• 제목/요약/키워드: 유전자 분류

검색결과 744건 처리시간 0.023초

마이크로어레이 데이터를 이용한 점증적 유전자 선택기반 암 분류 (Incremental Gene Selection-based Cancer Classification Using Microarray Data)

  • 권형태;홍진혁;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (B)
    • /
    • pp.7-10
    • /
    • 2007
  • 마이크로어레이 데이터는 매우 많은 수의 유전자로 구성되며, 암 분류 성능을 높이기 위해서는 대상 암과 관련된 유용한 유전자를 선택해야 한다. 기존 필터 기반 유전자 선택 기법은 유전자를 개별적으로 평가하여 암 분류에 사용하기 때문에, 유전자 사이의 관계나 분류기와의 상관성을 고려하지 않으며, 비슷한 특성의 유전자를 중복해서 선택하는 경향이 있다. 본 논문에서는 필터와 래퍼 방식을 결합하여 분류결과를 반복적으로 반영하며 유전자를 선택하는 기법을 제안한다. 필터 기법으로 유전자의 순위를 계산할 때 이전 분류에서 틀린 샘플의 가중치가 높도록 설계하고, 분류를 반복하면서 각 단계에서 유용한 유전자를 추가로 선택한다. 제안하는 방법을 대표적 암 분류 데이터인 림포마 암과 대장암 데이터에 적용하여 유용성을 검증하였다.

  • PDF

클래스 정보에 기반한 유전자 선택 (Gene Selection based on Class Information)

  • 이현진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.469-472
    • /
    • 2004
  • 여러 분류 문제에 다층퍼셉트론이 적용되어 좋은 성능을 보이고 있다. 하지만, 암 분류를 위한 분류기로 사용되는데 있어서 문제점은 샘플데이터 수에 비해 입력으로 사용되는 유전자의 수가 너무 많기 때문에 좋은 성능을 기대하기 힘들다는 점이다. 또한 많은 입력노드로 인해 가중치 파라메터들의 수가 증가하기 때문에 학습시에 계산량의 부담을 가중시킨다. 따라서 본 논문에서는 많은 유전자중에서 암분류에 중요한 영향을 끼치는 유전자를 선택하는 방법을 제안한다. 이러한 유전자 선택을 위하여 클래스의 정보를 나타내는 척도를 분석하고 이를 기반으로 하여 분류율을 향상시킬 수 있는 유전자를 선택하는 방법을 제안한다. 이렇게 선택된 유전자를 입력으로 하여 분류기를 구성하여, 제안하는 방법의 우수성을 검증한다.

  • PDF

암의 분류를 위한 음의 상관관계 유전자의 신경망 쌍 (Neural Network Pair with Negatively Correlated Genes for Cancer Classification)

  • 원홍희;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.359-361
    • /
    • 2003
  • 정확한 암의 분류는 암의 진단 및 치료에 있어 매우 중요하지만, 암을 진단하기 위한 기존의 여러 방법들은 종종 불완전한 결과를 도출한다. 최근의 마이크로어레이 기술에 기반한 분자 수준의 진단은 정확하고 객관적이며 체계적인 암의 분류를 위한 방법론을 제시해준다. 유전자 발현 데이터는 일반적으로 수천개 이상의 유전자를 포함하는데, 유전자 발현 데이터의 모든 유전자가 암과 관련이 있는 것이 아니므로 정확한 암을 분류하기 위하여 중요한 유전자만을 추출하는 것이 바람직하다. 본 논문에서 음의 상관관계를 갖는 두 개의 이상적인 유전자 벡터를 정의한 후 이와 유사한 정도를 기준으로 중요한 유전자 집단을 추출하고, 각각을 신경망으로 학습하여 결합하는 신경망 쌍을 제안한다. 실험 결과는 음의 상관관계를 갖는 두 개의 유전자 집단이 암의 클래스를 잘 구분할 수 있음을 보여주었다. 이 유전자 집단을 특징으로 하여 각각 학습한 신경망을 베이시안 방법으로 결합한 결과, 벤치마크 데이터에 대하여 신경망 쌍이 개별 분류기에 비해 우수한 성능을 보임을 확인하였다.

  • PDF

암 분류를 위한 기계학습 분류기의 성능평가 (Performance Evaluation of Machine Learning Classifiers for Cancer Classification)

  • 원홍희;조성배
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.405-408
    • /
    • 2002
  • Microarray 기술의 발전으로 많은 양의 유전자 정보를 얻게 되어 암의 정확한 분류와 진단에 대한 기대가 커지고 있다. 암을 정확하게 분류하기 위해서는 추출된 유전자에 많은 잡음이 들어가기 때문에 암과 관련이 있는 유전자만을 추출할 필요가 있다. 본 논문에서는 여러 가지 유전자 추출방법과 다양한 분류기의 성능을 체계적으로 평가하기 위하여, 세 가지 벤치마크 암 데이터에 대하여 실험하여 보았다. 또한 분류 성능을 향상시키기 위하여 분류기를 적절하게 결합한 결과, 결합된 분류기의 성능을 확인해볼 수 있었다.

  • PDF

조건(암, 정상)에 따라 특이적 관계를 나타내는 유전자 쌍으로 구성된 유전자 모듈을 이용한 독립샘플의 클래스예측 (Class prediction of an independent sample using a set of gene modules consisting of gene-pairs which were condition(Tumor, Normal) specific)

  • 정현이;윤영미
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권12호
    • /
    • pp.197-207
    • /
    • 2010
  • 대용량(High-throughput) 형태로 얻어진 cDNA 마이크로어레이 데이터에 다양한 데이터 마이닝 기법을 적용하면 서로 다른 조직에서 추출한 유전자의 발현정도를 비교할 수 있고 정상세포와 암세포에서 발현량의 차이를 보이는 DEG(Differently Expression Gene) 유전자를 추출할 수 있다. 이들을 이용하여 병을 진단할 수 있을 뿐만 아니라, 암의 진행 단계(Cancer Stage)에 따른 치료 방법을 결정할 수 있다. 마이크로어레이를 기반으로 한 대부분의 암 분류자는 기계학습 기법을 이용하여 암 관련 유전자를 추출하여, 이들 유전자를 총체적으로 이용하여 독립 샘플의 클래스(암, 정상)를 판정한다. 하지만 유전자의 발현량의 차이뿐만 아니라 유전자와 유전자의 상관관계의 변화가 질병 진단에 활용될 수 있다. 대부분의 질병은 단독 유전자의 변이에 의한 것이 아니라 유전자의 모듈로 이루어진 유전자조절네트워크의 변이에 의한 것이기 때문이다. 본 논문에서는 조건에 따라 특이적 관계를 나타내는 유전자 쌍을 식별하여, 이들 유전자 쌍을 이용한 유전자 분류 모듈을 생성한다. 분류 모듈을 이용한 암 분류 방법이 기존의 암 분류 방법보다 높은 정확도로 암과정상 샘플을 분류함을 보여주고 있다. 분류 모듈을 구성하는 유전자의 수가 상대적으로 적으므로 임상키트로의 개발도 고려할 수 있다. 향후 분류 모듈에 속하는 유전자의 기능적 검증을, GO(Gene Ontology)를 활용함으로서, 밝혀지지 않은 새로운 암 관련 유전자를 식별하고, 분류 모듈을 확대하여 암 특이적 유전자조절네트워크 구성에 활용할 계획이다.

전진 선택법을 이용한 유전자 발현정보 기반의 암 분류 (Cancer Classification with Gene Expression Profiles using Forward Selection Method)

  • 유시호;조성배
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (상)
    • /
    • pp.293-296
    • /
    • 2003
  • 유전 발현 데이터는 생명체의 특정 조직에서 채취한 샘플을 microarray상에서 측정한 것으로 유전자들의 발현 정도가 수치로 나타난 데이터이다. 일반적으로 정상조직과 이상조직에서 관련 유전자들의 발현 정도는 차이를 보이기 때문에, 유전발현 데이터를 통하여 암을 분류할 수 있다. 하지만 분류에 모든 유전자가 관여하지는 않으므로 관련성 있는 유전자만을 선별해내는 작업인 특징 선택방법이 필요하다. 본 논문에서는 회귀분석의 변수선택방법중 하나인 전진 선택법(forward selection method)을 사용하여 유전자들을 선택하고 분류하는 방법을 제안한다. 실험데이터는 대장암 데이트를 사용하였고, 분류기는 KNN을 사용하였다. 이 방법과 상관계수를 이용한 특징 선택 방법인 피어슨 상관계수와 스피어맨 상관계수방법과 비교해본 결과 전진 선택법에 의한 특징 선택방법이 암의 분류에 있어서 더 효과적인 유전자 선택을 한다는 사실을 확인하였다. 실험결과 90.3%의 높은 인식률을 보였다.

  • PDF

나이브 베이스 분류기를 이용한 유전발현 데이타기반 암 분류를 위한 순위기반 다중클래스 유전자 선택 (Rank-based Multiclass Gene Selection for Cancer Classification with Naive Bayes Classifiers based on Gene Expression Profiles)

  • 홍진혁;조성배
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제35권8호
    • /
    • pp.372-377
    • /
    • 2008
  • 최근 활발히 연구가 진행 중인 유전발현 데이타를 이용한 다중클래스 암 분류는 DNA 마이크로어레이로부터 획득된 대규모의 유전자 정보를 분석하여 암의 종류를 판단한다. 수집된 유전발현 데이타에는 대상 암과 관련이 없는 유전자도 포함되어 있기 때문에 높은 성능의 분류 결과를 얻기 위해서 유용한 유전자를 선택하는 것이 필요하다. 기존의 순위기반 유전자 선택은 이진클래스를 대상으로 고안되었고 이상표식 유전자(Ideal marker gene)를 이용하기 때문에 다중클래스 암 분류에 직접 적용하기에는 한계가 있다. 본 논문에서는 이상표식 유전자를 사용하지 않고 유전발현 수준의 분포를 직접 분석하는 순위기반 다중클래스 유전자 선택 기법을 제안한다. 유전발현 수준을 이산화하고 학습 데이타로부터 빈도를 계산하여 클래스 간 분별력을 측정한 후, 선택된 유전자를 이용하여 나이브 베이즈 분류기를 사용해 다중 암 분류를 수행한다. 제안하는 방법을 다수의 다중클래스 암 분류 데이타에 적용하여 기존 유전자 선택 방법에 비해 우수함을 확인하였다.

암 분류를 목적으로 하는 기계 학습 분류기를 위한 효과적인 유전자 선택 방법 (The Method of Gene Selection for Machine Learning Classifiers In Career Classification)

  • 박형근;이수정;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.205-207
    • /
    • 2004
  • 유전자 발현 분석 시스템에 있어서 microarray 기술의 발전은 유전 질환 진단의 정확성과 신뢰도를 향상시키는 데에 큰 기여를 하였다. 다양한 microarray기술을 통해 얻은 대량의 유전자 발현 정보는 기계 학습분류기를 이용한 암의 분류와 진단, 예측 분야에도 효과적으로 이용될 수 있다. 이 과정에서 종류에 따른 암의 정확한 분류를 위해서는 되도록 해당 암 클래스와의 직접적인 연관이 있는 유전자만을 선택하여 활용하는 것이 효과적이다. 본 논문에서는 이러한 정보력 있는 유전자(informative gene)를 효과적으로 선택 할 수 있는 유전자 선택 방법을 제시하고, 이를 이용하여 세 가지 벤치마크 암 데이터에 대하여 체계적인 실험을 하였다. 그 결과 향상된 분류 성능을 확인할 수 있었다.

  • PDF

마이크로어레이 자료에서 서포트벡터머신과 데이터 뎁스를 이용한 분류방법의 비교연구 (A comparison study of classification method based of SVM and data depth in microarray data)

  • 황진수;김지연
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권2호
    • /
    • pp.311-319
    • /
    • 2009
  • 군집과 분류분석에서 L1 데이터 뎁스를 이용한 DDclust와 DDclass라고 불리는 로버스트한 방법이 Jornsten (2004)에 의하여 제안되었다. SVM-기반방법이 많이 사용되나 이상치가 있는 경우에는 약간의 문제가 있다. 유전자 자료에서는 유전자 수가 많기 때문에 적절한 유전자 선택과정이 필요하다. 따라서 적절한 유전자 또는 유전자 군집을 선택하여 분류에 이용하면 분류의 성능을 향상시킬 수 있다. 이러한 관점에서 뎁스 기반 분류방법과 SVM-기반 분류방법을 비교 연구하여 그 성능을 비교 하였다.

  • PDF

전진선택법에 의해 선택된 부분 상관관계의 유전자들을 이용한 암 분류 (Classifying Cancer Using Partially Correlated Genes Selected by Forward Selection Method)

  • 유시호;조성배
    • 대한전자공학회논문지SP
    • /
    • 제41권3호
    • /
    • pp.83-92
    • /
    • 2004
  • 유전 발현 데이터는 생명체의 특정 조직에서 채취한 샘플을 마이크로어레이상에서 측정한 것으로, 유전자들의 발현 정도가 수치로 나타난 데이터이다. 일반적으로 정상조직과 이상조직에서 관련 유전자들의 발현 정도는 차이를 보이기 때문에 유전 발현 데이터를 통하여 암을 분류할 수 있다. 그러나 분류에 모든 유전자가 관여하지는 않으므로 효율적인 암의 분류를 위해서는 관련성 있는 소수의 유전자만을 선별해내는 작업인 특징선택 방법이 필요하다. 본 논문에서는 회귀분석의 변수선택방법중 하나인 전진 선택법(forward selection method)을 사용하여 유전자들을 선하고 분류하는 방법을 제안한다. 이 방법은 선택되는 유전자들의 중복된 정보를 최소화시켜 암의 분류에 있어 보다 효과적인 유전자 선택을 한다. 실험데이터는 대장암 데이터(Colon cancer dataset)를 사용하였고, 분류기는 k-최근접 이웃(KNN)을 사용하였다. 이 방법과 상관계수를 이용한 특징 선택방법인 피어슨 상관계수와 스피어맨 상관계수방법과 비교해본 결과 전진 선택법에 의한 특징선택 방법이 암의 분류에 있어서 더 효과적인 유전자 선택을 한다는 사실을 확인하였다. 실험결과 90.3%의 높은 인식률을 보였다. 추가적으로 림프종 데이터에 대한 실험을 하였고, 그 결과 전진 선택법의 유용성을 확인할 수 있었다.