• Title/Summary/Keyword: 유전자 분류

Search Result 744, Processing Time 0.023 seconds

Incremental Gene Selection-based Cancer Classification Using Microarray Data (마이크로어레이 데이터를 이용한 점증적 유전자 선택기반 암 분류)

  • Kown, Hyung-Tae;Hong, Jin-Hyuk;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.7-10
    • /
    • 2007
  • 마이크로어레이 데이터는 매우 많은 수의 유전자로 구성되며, 암 분류 성능을 높이기 위해서는 대상 암과 관련된 유용한 유전자를 선택해야 한다. 기존 필터 기반 유전자 선택 기법은 유전자를 개별적으로 평가하여 암 분류에 사용하기 때문에, 유전자 사이의 관계나 분류기와의 상관성을 고려하지 않으며, 비슷한 특성의 유전자를 중복해서 선택하는 경향이 있다. 본 논문에서는 필터와 래퍼 방식을 결합하여 분류결과를 반복적으로 반영하며 유전자를 선택하는 기법을 제안한다. 필터 기법으로 유전자의 순위를 계산할 때 이전 분류에서 틀린 샘플의 가중치가 높도록 설계하고, 분류를 반복하면서 각 단계에서 유용한 유전자를 추가로 선택한다. 제안하는 방법을 대표적 암 분류 데이터인 림포마 암과 대장암 데이터에 적용하여 유용성을 검증하였다.

  • PDF

Gene Selection based on Class Information (클래스 정보에 기반한 유전자 선택)

  • Lee Hyunjin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.469-472
    • /
    • 2004
  • 여러 분류 문제에 다층퍼셉트론이 적용되어 좋은 성능을 보이고 있다. 하지만, 암 분류를 위한 분류기로 사용되는데 있어서 문제점은 샘플데이터 수에 비해 입력으로 사용되는 유전자의 수가 너무 많기 때문에 좋은 성능을 기대하기 힘들다는 점이다. 또한 많은 입력노드로 인해 가중치 파라메터들의 수가 증가하기 때문에 학습시에 계산량의 부담을 가중시킨다. 따라서 본 논문에서는 많은 유전자중에서 암분류에 중요한 영향을 끼치는 유전자를 선택하는 방법을 제안한다. 이러한 유전자 선택을 위하여 클래스의 정보를 나타내는 척도를 분석하고 이를 기반으로 하여 분류율을 향상시킬 수 있는 유전자를 선택하는 방법을 제안한다. 이렇게 선택된 유전자를 입력으로 하여 분류기를 구성하여, 제안하는 방법의 우수성을 검증한다.

  • PDF

Neural Network Pair with Negatively Correlated Genes for Cancer Classification (암의 분류를 위한 음의 상관관계 유전자의 신경망 쌍)

  • 원홍희;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.359-361
    • /
    • 2003
  • 정확한 암의 분류는 암의 진단 및 치료에 있어 매우 중요하지만, 암을 진단하기 위한 기존의 여러 방법들은 종종 불완전한 결과를 도출한다. 최근의 마이크로어레이 기술에 기반한 분자 수준의 진단은 정확하고 객관적이며 체계적인 암의 분류를 위한 방법론을 제시해준다. 유전자 발현 데이터는 일반적으로 수천개 이상의 유전자를 포함하는데, 유전자 발현 데이터의 모든 유전자가 암과 관련이 있는 것이 아니므로 정확한 암을 분류하기 위하여 중요한 유전자만을 추출하는 것이 바람직하다. 본 논문에서 음의 상관관계를 갖는 두 개의 이상적인 유전자 벡터를 정의한 후 이와 유사한 정도를 기준으로 중요한 유전자 집단을 추출하고, 각각을 신경망으로 학습하여 결합하는 신경망 쌍을 제안한다. 실험 결과는 음의 상관관계를 갖는 두 개의 유전자 집단이 암의 클래스를 잘 구분할 수 있음을 보여주었다. 이 유전자 집단을 특징으로 하여 각각 학습한 신경망을 베이시안 방법으로 결합한 결과, 벤치마크 데이터에 대하여 신경망 쌍이 개별 분류기에 비해 우수한 성능을 보임을 확인하였다.

  • PDF

Performance Evaluation of Machine Learning Classifiers for Cancer Classification (암 분류를 위한 기계학습 분류기의 성능평가)

  • Won, Hong-Hee;Cho, Sung-Bae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.405-408
    • /
    • 2002
  • Microarray 기술의 발전으로 많은 양의 유전자 정보를 얻게 되어 암의 정확한 분류와 진단에 대한 기대가 커지고 있다. 암을 정확하게 분류하기 위해서는 추출된 유전자에 많은 잡음이 들어가기 때문에 암과 관련이 있는 유전자만을 추출할 필요가 있다. 본 논문에서는 여러 가지 유전자 추출방법과 다양한 분류기의 성능을 체계적으로 평가하기 위하여, 세 가지 벤치마크 암 데이터에 대하여 실험하여 보았다. 또한 분류 성능을 향상시키기 위하여 분류기를 적절하게 결합한 결과, 결합된 분류기의 성능을 확인해볼 수 있었다.

  • PDF

Class prediction of an independent sample using a set of gene modules consisting of gene-pairs which were condition(Tumor, Normal) specific (조건(암, 정상)에 따라 특이적 관계를 나타내는 유전자 쌍으로 구성된 유전자 모듈을 이용한 독립샘플의 클래스예측)

  • Jeong, Hyeon-Iee;Yoon, Young-Mi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.197-207
    • /
    • 2010
  • Using a variety of data-mining methods on high-throughput cDNA microarray data, the level of gene expression in two different tissues can be compared, and DEG(Differentially Expressed Gene) genes in between normal cell and tumor cell can be detected. Diagnosis can be made with these genes, and also treatment strategy can be determined according to the cancer stages. Existing cancer classification methods using machine learning select the marker genes which are differential expressed in normal and tumor samples, and build a classifier using those marker genes. However, in addition to the differences in gene expression levels, the difference in gene-gene correlations between two conditions could be a good marker in disease diagnosis. In this study, we identify gene pairs with a big correlation difference in two sets of samples, build gene classification modules using these gene pairs. This cancer classification method using gene modules achieves higher accuracy than current methods. The implementing clinical kit can be considered since the number of genes in classification module is small. For future study, Authors plan to identify novel cancer-related genes with functionality analysis on the genes in a classification module through GO(Gene Ontology) enrichment validation, and to extend the classification module into gene regulatory networks.

Cancer Classification with Gene Expression Profiles using Forward Selection Method (전진 선택법을 이용한 유전자 발현정보 기반의 암 분류)

  • Yoo, Si-Ho;Cho, Sung-Bae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.293-296
    • /
    • 2003
  • 유전 발현 데이터는 생명체의 특정 조직에서 채취한 샘플을 microarray상에서 측정한 것으로 유전자들의 발현 정도가 수치로 나타난 데이터이다. 일반적으로 정상조직과 이상조직에서 관련 유전자들의 발현 정도는 차이를 보이기 때문에, 유전발현 데이터를 통하여 암을 분류할 수 있다. 하지만 분류에 모든 유전자가 관여하지는 않으므로 관련성 있는 유전자만을 선별해내는 작업인 특징 선택방법이 필요하다. 본 논문에서는 회귀분석의 변수선택방법중 하나인 전진 선택법(forward selection method)을 사용하여 유전자들을 선택하고 분류하는 방법을 제안한다. 실험데이터는 대장암 데이트를 사용하였고, 분류기는 KNN을 사용하였다. 이 방법과 상관계수를 이용한 특징 선택 방법인 피어슨 상관계수와 스피어맨 상관계수방법과 비교해본 결과 전진 선택법에 의한 특징 선택방법이 암의 분류에 있어서 더 효과적인 유전자 선택을 한다는 사실을 확인하였다. 실험결과 90.3%의 높은 인식률을 보였다.

  • PDF

Rank-based Multiclass Gene Selection for Cancer Classification with Naive Bayes Classifiers based on Gene Expression Profiles (나이브 베이스 분류기를 이용한 유전발현 데이타기반 암 분류를 위한 순위기반 다중클래스 유전자 선택)

  • Hong, Jin-Hyuk;Cho, Sung-Bae
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.8
    • /
    • pp.372-377
    • /
    • 2008
  • Multiclass cancer classification has been actively investigated based on gene expression profiles, where it determines the type of cancer by analyzing the large amount of gene expression data collected by the DNA microarray technology. Since gene expression data include many genes not related to a target cancer, it is required to select informative genes in order to obtain highly accurate classification. Conventional rank-based gene selection methods often use ideal marker genes basically devised for binary classification, so it is difficult to directly apply them to multiclass classification. In this paper, we propose a novel method for multiclass gene selection, which does not use ideal marker genes but directly analyzes the distribution of gene expression. It measures the class-discriminability by discretizing gene expression levels into several regions and analyzing the frequency of training samples for each region, and then classifies samples by using the naive Bayes classifier. We have demonstrated the usefulness of the proposed method for various representative benchmark datasets of multiclass cancer classification.

The Method of Gene Selection for Machine Learning Classifiers In Career Classification (암 분류를 목적으로 하는 기계 학습 분류기를 위한 효과적인 유전자 선택 방법)

  • 박형근;이수정;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.205-207
    • /
    • 2004
  • 유전자 발현 분석 시스템에 있어서 microarray 기술의 발전은 유전 질환 진단의 정확성과 신뢰도를 향상시키는 데에 큰 기여를 하였다. 다양한 microarray기술을 통해 얻은 대량의 유전자 발현 정보는 기계 학습분류기를 이용한 암의 분류와 진단, 예측 분야에도 효과적으로 이용될 수 있다. 이 과정에서 종류에 따른 암의 정확한 분류를 위해서는 되도록 해당 암 클래스와의 직접적인 연관이 있는 유전자만을 선택하여 활용하는 것이 효과적이다. 본 논문에서는 이러한 정보력 있는 유전자(informative gene)를 효과적으로 선택 할 수 있는 유전자 선택 방법을 제시하고, 이를 이용하여 세 가지 벤치마크 암 데이터에 대하여 체계적인 실험을 하였다. 그 결과 향상된 분류 성능을 확인할 수 있었다.

  • PDF

A comparison study of classification method based of SVM and data depth in microarray data (마이크로어레이 자료에서 서포트벡터머신과 데이터 뎁스를 이용한 분류방법의 비교연구)

  • Hwang, Jin-Soo;Kim, Jee-Yun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.311-319
    • /
    • 2009
  • A robust L1 data depth was used in clustering and classification, so called DDclus and DDclass by Jornsten (2004). SVM-based classification works well in most of the situation but show some weakness in the presence of outliers. Proper gene selection is important in classification since there are so many redundant genes. Either by selecting appropriate genes or by gene clustering combined with classification method enhance the overall performance of classification. The performance of depth based method are evaluated among several SVM-based classification methods.

  • PDF

Classifying Cancer Using Partially Correlated Genes Selected by Forward Selection Method (전진선택법에 의해 선택된 부분 상관관계의 유전자들을 이용한 암 분류)

  • 유시호;조성배
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.83-92
    • /
    • 2004
  • Gene expression profile is numerical data of gene expression level from organism measured on the microarray. Generally, each specific tissue indicates different expression levels in related genes, so that we can classify cancer with gene expression profile. Because not all the genes are related to classification, it is needed to select related genes that is called feature selection. This paper proposes a new gene selection method using forward selection method in regression analysis. This method reduces redundant information in the selected genes to have more efficient classification. We used k-nearest neighbor as a classifier and tested with colon cancer dataset. The results are compared with Pearson's coefficient and Spearman's coefficient methods and the proposed method showed better performance. It showed 90.3% accuracy in classification. The method also successfully applied to lymphoma cancer dataset.