• Title/Summary/Keyword: 유전자 발현 네트워크

Search Result 59, Processing Time 0.029 seconds

Implementation of PC-Cluster System for Efficient Bioinformatics Sequence Analysis (효율적인 생물정보 서열검색을 위한 PC-클러스터 시스템 구현)

  • 공재근;좌용권;박정선;유선주;이문상
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.37-39
    • /
    • 2004
  • 최근 들어 유전자 서열의 생산량 증가에 비례하여 유전자 발현 마이크로 칩과 같은 새로운 분석방법과 기술들이 도입되면서 연구자들이 매일 수천 개의 서열을 효율적으로 분석해야 할 필요성이 증대되고 있다. 이러한 생명공학분야의 급속한 발전은 대용량 유전자 서열에 대한 빠른 분석이 가능한 컴퓨팅 자원을 요구하고 있으나 IT 인프라에 대한 막대한 투지비용으로 인해 관련 연구기관에서 쉽게 이들 컴퓨팅 자원을 도입하지 못하고 있는 실정이다. 본 연구에서는 저가의 PC 서버를 고속의 네트워크로 연결한 PC 클러스터를 활용하여 시스템의 안정성과 신뢰성을 보장함과 동시에 범용성을 지닌 생물정보 서열검색 시스템을 구축하였다. 이러한 효율적인 시스템 구축을 통해 생물정보 데이터베이스로 서열 검색 시스템을 제공하고, 대용량 서열 데이터베이스의 검색 시간을 단축하였다.

  • PDF

An Attribute Ordering Optimization in Bayesian Networks for Prognostic Modeling of the Metabolic Syndrome (대사증후군의 예측 모델링을 위한 베이지안 네트워크의 속성 순서 최적화)

  • Park Han-Saem;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.1-3
    • /
    • 2006
  • 대사증후군은 당뇨병, 고혈압, 복부 비만, 고지혈증 등의 질병이 한 개인에게 동시에 발현하는 것을 말하며, 최근 경제여건의 향상 및 식생활 습관의 변화와 함께 우리나라에서도 심각한 문제가 되고 있다. 한편 불확실성의 처리를 위해 많이 사용되는 베이지안 네트워크는 사람이 분석 가능한 확률 기반의 모델로 최근 의학분야에서 질병의 진단이나 예측모델을 구성하기 위한 방법으로 유용하게 사용되고 있다. 베이지안 네트워크의 구조를 학습하는 대표적인 알고리즘인 K2 알고리즘은 속성이 입력되는 순서의 영향을 받으며, 따라서 이 또한 하나의 주제로써 연구되어 왔다. 본 논문에서는 유전자 알고리즘을 이용하여 베이지안 네트워크에 입력되는 속성 순서를 최적화하며 이 과정에서 의학지식을 적용해 효율적인 최적화가 가능하도록 하였다. 제안하는 모델을 통해 1993년의 데이터를 가지고 1995년의 상태를 예측하는 분류 실험을 수행한 결과 속성 순서 최적화 후에 이전보다 향상된 예측율을 보였으며 또한 다층 신경망, k-최근접 이웃 등을 이용한 다른 모델보다 더 높은 예측율을 보였다.

  • PDF

Development of Clustering Algorithm based on Massive Network Compression (대용량 네트워크 압축 기반 클러스터링 알고리즘 개발)

  • Seo, Dongmin;Yu, Seok Jong;Lee, Min-Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.53-54
    • /
    • 2016
  • 빅데이터란 대용량 데이터 활용 및 분석을 통해 가치 있는 정보를 추출하고, 이를 바탕으로 대응 방안 도출 또는 변화를 예측하는 기술을 의미한다. 그리고 빅데이터 분석에 활용되는 데이터인 페이스북과 같은 소셜 데이터, 유전자 발현과 같은 바이오 데이터, 항공망과 같은 지리정보 데이터들은 대용량 네트워크로 구성되어 있다. 네트워크 클러스터링은 서로 유사한 특성을 갖는 네트워크 내의 데이터들을 동일한 클러스터로 묶는 기법으로 네트워크 데이터를 분석하고 그 특성을 파악하는데 폭넓게 사용된다. 최근 빅데이터가 다양한 분야에서 활용되면서 방대한 양의 네트워크 데이터가 생성되고 있고, 이에 따라서 대용량 네트워크 데이터를 효율적으로 처리하는 클러스터링 기법의 중요성이 증가하고 있다. MCL(Markov Clustering) 알고리즘은 플로우 기반 무감독(unsupervised) 클러스터링 알고리즘으로 확장성이 우수해 다양한 분야에서 활용되고 있다. 하지만, MCL은 대용량 네트워크에 대해서는 많은 클러스터링 연산을 요구하며 너무 많은 클러스터를 생성하는 문제를 갖는다. 본 논문에서는 네트워크 압축을 기반으로 한 클러스터링 알고리즘을 제안함으로써 MCL보다 클러스터링 속도와 정확도를 향상시켰다. 또한, 희소행렬을 효율적으로 저장하는 CSC(Compressed Sparse Column) 자료구조와 MapReduce 기법을 제안한 클러스터링 알고리즘에 적용함으로써 대용량 네트워크에 대한 클러스터링 속도를 향상시켰다.

  • PDF

Characterization of the Alzheimer's disease-related network based on the dynamic network approach (동적인 개념을 적용한 알츠하이머 질병 네트워크의 특성 분석)

  • Kim, Man-Sun;Kim, Jeong-Rae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.529-535
    • /
    • 2015
  • Biological networks have been handled with the static concept. However, life phenomena in cells occur depending on the cellular state and the external environment, and only a few proteins and their interactions are selectively activated. Therefore, we should adopt the dynamic network concept that the structure of a biological network varies along the flow of time. This concept is effective to analyze the progressive transition of the disease. In this paper, we applied the proposed method to Alzheimer's disease to analyze the structural and functional characteristics of the disease network. Using gene expression data and protein-protein interaction data, we constructed the sub-networks in accordance with the progress of disease (normal, early, middle and late). Based on this, we analyzed structural properties of the network. Furthermore, we found module structures in the network to analyze the functional properties of the sub-networks using the gene ontology analysis (GO). As a result, it was shown that the functional characteristics of the dynamics network is well compatible with the stage of the disease which shows that it can be used to describe important biological events of the disease. Via the proposed approach, it is possible to observe the molecular network change involved in the disease progression which is not generally investigated, and to understand the pathogenesis and progression mechanism of the disease at a molecular level.

Design of Distributed Node Scheduling Scheme Inspired by Gene Regulatory Networks for Wireless Sensor Networks (무선 센서 망에서 생체 유전자 조절 네트워크를 모방한 분산적 노드 스케줄링 기법 설계)

  • Byun, Heejung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.2054-2061
    • /
    • 2015
  • Biologically inspired modeling techniques have received considerable attention for their robustness, scalability, and adaptability with simple local interactions and limited information. Among these modeling techniques, Gene Regulatory Networks (GRNs) play a central role in understanding natural evolution and the development of biological organisms from cells. In this paper, we apply GRN principles to the WSN system and propose a new GRN model for decentralized node scheduling design to achieve energy balancing while meeting delay requirements. Through this scheme, each sensor node schedules its state autonomously in response to gene expression and protein concentration, which are controlled by the proposed GRN-inspired node scheduling model. Simulation results indicate that the proposed scheme achieves superior performance with energy balancing as well as desirable delay compared with other well-known schemes.

Construction of Gene Interaction Networks from Gene Expression Data Based on Evolutionary Computation (진화연산에 기반한 유전자 발현 데이터로부터의 유전자 상호작용 네트워크 구성)

  • Jung Sung Hoon;Cho Kwang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1189-1195
    • /
    • 2004
  • This paper investigates construction of gene (interaction) networks from gene expression time-series data based on evolutionary computation. To illustrate the proposed approach in a comprehensive way, we first assume an artificial gene network and then compare it with the reconstructed network from the gene expression time-series data generated by the artificial network. Next, we employ real gene expression time-series data (Spellman's yeast data) to construct a gene network by applying the proposed approach. From these experiments, we find that the proposed approach can be used as a useful tool for discovering the structure of a gene network as well as the corresponding relations among genes. The constructed gene network can further provide biologists with information to generate/test new hypotheses and ultimately to unravel the gene functions.

Effects of Sasa quelpaertensis Extract on mRNA and microRNA Profiles of SNU-16 Human Gastric Cancer Cells (SNU-16 위암 세포의 mRNA 및 miRNA 프로파일에 미치는 제주조릿대 추출물의 영향)

  • Jang, Mi Gyeong;Ko, Hee Chul;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.501-512
    • /
    • 2020
  • Sasa quelpaertensis Nakai leaf has been used as a folk medicine for the treatment of gastric ulcer, dipsosis, and hematemesis based on its anti-inflammatory, antipyretic, and diuretic characteristics. We have previously reported the procedure for deriving a phytochemical-rich extract (PRE) from S. quelpaertensis and how PRE and its ethyl acetate fraction (EPRE) exhibits an anticancer effect by inducing apoptosis in various gastric cancer cells. To explore the molecular targets involved in this apoptosis, we investigated the mRNA and microRNA profiles of EPRE-treated SNU-16 human gastric cancer cells. In total, 2,875 differentially expressed genes were identified by RNA sequencing, and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that the EPRE-modulated genes are associated with apoptosis, mitogen-activated protein kinase, inflammatory response, tumor necrosis factor signaling, and cancer pathways. Subsequently, protein-protein interaction network analysis confirmed interactions among genes associated with cell death and apoptosis, and 27 differentially expressed microRNAs were identified by further sequencing. Here, GO and KEGG pathway analysis revealed that EPRE modified the expression of microRNAs associated with the cell cycle and cell death, as well as signaling of tropomyosin-receptor-kinase receptor, transforming growth factor-b, nuclear factor kB, and cancer pathways. Taken together, these results provide insight into the mechanisms underlying the anticancer effect of EPRE.

Analyzing Research Trends in Bioinformatics based on Comparison between Grey and White Bioinformatics Literatures (바이오인포매틱스 분야 회색문헌 및 백색문헌의 연구 동향 비교 분석)

  • Kim, Ye Eun;Kim, Jung Ju;Song, Min
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2013.08a
    • /
    • pp.11-14
    • /
    • 2013
  • 본 연구의 목적은 바이오인포매틱스 분야의 회색문헌과 백색문헌의 초록을 대상으로 단어 동시출현(word co-occurrence)네트워크 분석을 통해 해당 분야의 연구 동향을 비교 분석하고자 하였다. 이를 위해 2010년부터 2012년까지 발표된 회색문헌인 회의자료(proceeding)와 백색문헌인 학술논문(journal article)의 초록을 SCOPUS, IEEEXplore, Microsoft academic search에서 수집하였다. 단어 동시출현 네트워크를 분석한 결과 회색문헌의 주요 연구는 분석도구 및 방법으로, 백색문헌의 주요 연구는 바이오인포매틱스의 주요 연구대상인 유전자 발현, 단백질 서열 및 구조 등으로 나타났다.

  • PDF

Evolutionary Learning of Hypernetwork Classifiers Based on Sequential Bayesian Sampling for High-dimensional Data (고차 데이터 분류를 위한 순차적 베이지안 샘플링을 기반으로 한 하이퍼네트워크 모델의 진화적 학습 기법)

  • Ha, Jung-Woo;Kim, Soo-Jin;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.336-338
    • /
    • 2012
  • 본 연구에서는 고차 데이터 분류를 위해 순차적 베이지만 샘플링 기반의 진화연산 기법을 이용한 하이퍼네트워크 모델의 학습 알고리즘을 제시한다. 제시하는 방법에서는 모델의 조건부 확률의 사후(posterior) 분포를 최대화하도록 학습이 진행된다. 이를 위해 사전(prior) 분포를 문제와 관련된 사전지식(prior knowledge) 및 모델 복잡도(model complexity)로 정의하고, 측정된 모델의 분류성능을 우도(likelihood)로 사 용하며, 측정된 사전분포와 우도를 이용하여 모델의 적합도(fitness)를 정의한다. 이를 통해 하이퍼네트워크 모델은 고차원 데이터를 효율적으로 학습 가능할 뿐이 아니라 모델의 학습시간 및 분류성능이 개선될 수 있다. 또한 학습 시에 파라미터로 주어지던 하이퍼에지의 구성 및 모델의 크기가 학습과정 중에 적응적으로 결정될 수 있다. 제안하는 학습방법의 검증을 위해 본 논문에서는 약 25,000개의 유전자 발현정보 데이터셋에 대한 분류문제에 모델을 적용한다. 실험 결과를 통해 제시하는 방법이 기존 하이퍼네트워크 학습 방법 뿐 아니라 다른 모델들에 비해 우수한 분류 성능을 보여주는 것을 확인할 수 있다. 또한 다양한 실험을 통해 사전분포로 사용된 사전지식이 모델 학습에 끼치는 영향을 분석한다.

Exploring Cancer-Specific microRNA-mRNA Interactions by Evolutionary Layered Hypernetwork Models (진화연산 기반 계층적 하이퍼네트워크 모델에 의한 암 특이적 microRNA-mRNA 상호작용 탐색)

  • Kim, Soo-Jin;Ha, Jung-Woo;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.980-984
    • /
    • 2010
  • Exploring microRNA (miRNA) and mRNA regulatory interactions may give new insights into diverse biological phenomena. Recently, miRNAs have been discovered as important regulators that play a major role in various cellular processes. Therefore, it is essential to identify functional interactions between miRNAs and mRNAs for understanding the context- dependent activities of miRNAs in complex biological systems. While elucidating complex miRNA-mRNA interactions has been studied with experimental and computational approaches, it is still difficult to infer miRNA-mRNA regulatory modules. Here we present a novel method, termed layered hypernetworks (LHNs), for identifying functional miRNA-mRNA interactions from heterogeneous expression data. In experiments, we apply the LHN model to miRNA and mRNA expression profiles on multiple cancers. The proposed method identifies cancer-specific miRNA-mRNA interactions. We show the biological significance of the discovered miRNA- mRNA interactions.