• Title/Summary/Keyword: 유전자알고리듬

Search Result 91, Processing Time 0.032 seconds

FIR filter parameter estimation using the genetic algorithm (유전자 알고리듬을 이용한 FIR 필터의 파라미터 추정)

  • Son, Jun-Hyeok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.502-504
    • /
    • 2005
  • Recently genetic algorithm techniques have widely used in adaptive and control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of genetic algorithm constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a genetic algorithm used for identification of the process dynamics of FIR filter and it was shown that this method offered superior capability over the genetic algorithm. A genetic algorithm is used to solve the parameter identification problem for linear and nonlinear digital filters. This paper goal estimate FIR filter parameter using the genetic algorithm.

  • PDF

Active Noise Control In a Cylindrical Cavity (원통형 밀폐공간 내부의 능동소음제어)

  • Lee, Ho-Jun;Park, Hyeon-Cheol;Hwang, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2302-2312
    • /
    • 2000
  • An active control of the transmission of noise through an aircraft fuselage is investigated numerically. A cylinder-cavity system was used as a model for this study. The fuselage is modeled as a fi nite, thin shel cylinder with constant thickness. The sound field generated by an exterior monopole source is transmitted into the cavity through the cylinder. Point force actuators on the cylinder are driven by error sensor that is placed in 3D cavity. Modal coupling theory is used to formulate the numerical models and describe the system behavior. Minimization of the acoustic potential energy in the fuselage is carried out as a performance index. Continuous parameter genetic algorithm is used to search the optimal actuator position and both results are compared.

A Study on Multiphase Optimization of Machine Tool Structures (공작기계구조물의 다단계 최적화에 관한 연구)

  • 이영우;성활경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.42-45
    • /
    • 2002
  • In this paper, multiphase optimization of machine Tool structure is presented. The final goal is to obtain 1) light weight, 2) statically and dynamically rigid. and 3) thermally stable structure. The entire optimization process is carried out in three phases. In the first phase, multiple static optimization problem with two objective functions is treated using Pareto genetic algorithm. where two objective functions are weight of the structure and static compliance. In the second phase, maximum receptance is minimized using simple genetic algorithm. And the last phase, thermal deflection to moving heat sources is analyzed using Predictor-Corrector Method. The method is applied to a high speed line center design which takes the shape of back-column structure.

  • PDF

Release Planning in Software Product Lines Using a Genetic Algorithm (유전자 알고리듬을 이용한 소프트웨어 제품라인의 출시 계획 수립)

  • Yoo, Jaewook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.142-148
    • /
    • 2012
  • Release planning for incremental software development is to select and assign features in sequence of releases along a specified planning horizon. It includes the technical precedence inherent in the features, the conflicting priorities as determined by the representative stakeholders, and the balance between required and available resources. The complexity of this consideration is getting more complicated when planning releases in software product lines. The problem is formulated as a precedence-constrained multiple 0-1 knapsack problem. In this research a genetic algorithm is developed for solving the release planning problems in software product lines as well as tests for the proposed solution methodology are conducted using data generated randomly.

A Greedy Genetic Algorithm for Release Planning in Software Product Lines (소프트웨어 제품라인의 출시 계획 수립을 위한 탐욕 유전자 알고리듬)

  • Yoo, Jaewook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.3
    • /
    • pp.17-24
    • /
    • 2013
  • Release planning in a software product line (SPL) is to select and assign the features of the multiple software products in the SPL in sequence of releases along a specified planning horizon satisfying the numerous constraints regarding technical precedence, conflicting priorities for features, and available resources. A greedy genetic algorithm is designed to solve the problems of release planning in SPL which is formulated as a precedence-constrained multiple 0-1 knapsack problem. To be guaranteed to obtain feasible solutions after the crossover and mutation operation, a greedy-like heuristic is developed as a repair operator and reflected into the genetic algorithm. The performance of the proposed solution methodology in this research is tested using a fractional factorial experimental design as well as compared with the performance of a genetic algorithm developed for the software release planning. The comparison shows that the solution approach proposed in this research yields better result than the genetic algorithm.

A Genetic Algorithm for Assignments of Dual Homing Cell-To-Switch under Mobile Communication Networks (이동 통신 네트워크에서의 듀얼 호밍 셀 스위치 할당을 위한 유전자 알고리듬)

  • Woo Hoon-Shik;Hwang Sun-Tae
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.2
    • /
    • pp.29-39
    • /
    • 2006
  • There has been a tremendous need for dual homing cell switch assignment problems where calling volume and patterns are different at different times of the day. This problem of assigning cells to switches in the planning phase of mobile networks consists in finding an assignment plan which minimizes the communication costs taking into account some constraints such as capacity of switches. This optimization problem is known to be difficult to solve, such that heuristic methods are usually utilized to find good solutions in a reasonable amount of time. In this paper, we propose an evolutionary approach, based on the genetic algorithm paradigm, for solving this problem. Simulation results confirm the appropriateness and effectiveness of this approach which yields solutions of good quality.

  • PDF

Application of Genetic and Local Optimization Algorithms for Object Clustering Problem with Similarity Coefficients (유사성 계수를 이용한 군집화 문제에서 유전자와 국부 최적화 알고리듬의 적용)

  • Yim, Dong-Soon;Oh, Hyun-Seung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.1
    • /
    • pp.90-99
    • /
    • 2003
  • Object clustering, which makes classification for a set of objects into a number of groups such that objects included in a group have similar characteristic and objects in different groups have dissimilar characteristic each other, has been exploited in diverse area such as information retrieval, data mining, group technology, etc. In this study, an object-clustering problem with similarity coefficients between objects is considered. At first, an evaluation function for the optimization problem is defined. Then, a genetic algorithm and local optimization technique based on heuristic method are proposed and used in order to obtain near optimal solutions. Solutions from the genetic algorithm are improved by local optimization techniques based on object relocation and cluster merging. Throughout extensive experiments, the validity and effectiveness of the proposed algorithms are tested.

A Genetic Algorithm for Route Guidance System in Intermodal Transportation Networks with Time - Schedule Constraints (서비스시간 제한이 있는 복합교통망에서의 경로안내 시스템을 위한 유전자 알고리듬)

  • Chang, In-Seong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.2
    • /
    • pp.140-149
    • /
    • 2001
  • The paper discusses the problem of finding the Origin-Destination(O-D) shortest paths in internodal transportation networks with time-schedule constraints. The shortest path problem on the internodal transportation network is concerned with finding a path with minimum distance, time, or cost from an origin to a destination using all possible transportation modalities. The time-schedule constraint requires that the departure time to travel from a transfer station to another node takes place only at one of pre-specified departure times. The scheduled departure times at the transfer station are the times when the passengers are allowed to leave the station to another node using the relative transportation modality. Therefore, the total time of a path in an internodal transportation network subject to time-schedule constraints includes traveling time and transfer waiting time. In this paper, a genetic algorithm (GA) approach is developed to deal with this problem. The effectiveness of the GA approach is evaluated using several test problems.

  • PDF

A Heterogeneous VRP to Minimize the Transportation Costs Using Genetic Algorithm (유전자 알고리듬을 이용한 운행비용 최소화 다용량 차량경로문제)

  • Ym, Mu-Kyun;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.20 no.2
    • /
    • pp.103-111
    • /
    • 2007
  • A heterogeneous VRP which considers various capacities, fixed and variable costs was suggested in this study. The transportation cost for vehicle is composed of its fixed and variable costs incurred proportionately to the travel distance. The main objective is to minimize the total sum of transportation costs. A mathematical programming model was suggested for this purpose and it gives an optimal solution by using OPL-STUDIO (ILOG CPLEX). A genetic algorithm which considers improvement of an initial solution, new fitness function with weighted cost and distance rates, and flexible mutation rate for escaping local solution was also suggested. The suggested algorithm was compared with the results of a tabu search and sweeping method by Taillard and Lee, respectively. The suggested algorithm gives better solutions rather than existing algorithms.

Financial Application of Integrated Optimization and Machine Learning Technique (최적화와 기계학습 결합기법의 재무응용)

  • Kim, Kyoung-jae;Park, Hoyeon;Cha, Injoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.429-430
    • /
    • 2019
  • 본 논문에서는 최적화 기법에 기반한 지능형 시스템의 재무응용사례를 다룬다. 본 연구에서 제안하는 모형은 대표적인 최적화 기법 중 하나인 시뮬레이티드 어니일링인데 이는 유전자 알고리듬과 유사한 최적화 성능을 가지고 있는 것으로 알려져 있으나 재무분야에서 응용된 사례가 거의 없다. 본 연구에서 제안하는 지능형 시스템은 시뮬레이티드 어니일링과 기계학습 기법을 결합한 것이다. 일반적으로 최적화와 기계학습 기법을 결합하는 방법은 특징선택(feature selection), 특징 가중치 최적화(feature weighting), 사례선택(instance selection), 모수 최적화(parameter optimization) 등의 방법이 있는데 선행연구에서 가장 많이 사용된 것은 특징선택에 두 기법을 결합하는 방식이다. 본 연구에서도 기계학습 기법을 재무 문제에 활용함에 있어서 최적의 특징선택을 위해 시뮬레이티드 어니일링을 결합하는 방식을 사용한다. 본 연구에서 제안된 기법의 유용성을 확인하기 위하여 실제 재무분야의 데이터를 활용하여 예측 정확도를 확인하였으며 그 결과를 통하여 제안하는 모형의 유용성을 확인할 수 있었다.

  • PDF