• Title/Summary/Keyword: 유연 구조 상호작용

Search Result 78, Processing Time 0.024 seconds

Time-Domain Earthquake Response Analysis of Rectangular Liquid Storage Tank Considering Fluid-Structure-Soil Interaction (유체-구조물-지반 상호작용을 고려한 직사각형 액체저장탱크의 시간영역 지진응답해석)

  • Lee, Jin Ho;Cho, Jeong-Rae;Han, Seong-Wook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.383-390
    • /
    • 2020
  • Since the dynamic behaviors of liquid storage tanks on flexible soil are significantly influenced by the fluid-structure-soil interaction (FSSI), its effects must be rigorously considered for accurate earthquake analysis and seismic design of the storage system. In this study, dynamic analysis is performed for a rectangular liquid storage tank on flexible soil, and its dynamic characteristics are examined by rigorously considering the effects of FSSI. The hydrodynamic force and the interaction force between the structure and soil are evaluated using the finite-element approach. In the evaluations, mid-point integrated finite elements and viscous dampers are considered for energy radiation into the infinite soil. The effective earthquake force is then obtained from free-field analysis. It is thus demonstrated that the earthquake responses of the rectangular liquid storage tank on flexible soil are significantly influenced by the FSSI.

Modeling and Analysis of Interactions Between A Satellite and Variable-Speed Control Moment Gyros (인공위성과 가변속 제어모멘트자이로의 상호작용 모델링 및 해석)

  • Jin, Jaehyun;Leeghim, Henzeh
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.17-26
    • /
    • 2018
  • The interaction model between variable-speed control moment gyros and a satellite has been studied based on the multi-body dynamics. Using the interaction model, we could obtain data for the design of VCMG motors and the strength design of structure. The interaction effects of flexible modules such as solar panels were included. Flexible modes are excited by the satellite's maneuver, and these modes cause perturbations in the satellite attitude. We developed a simulation program by Modelica and verified the proposed model.

자연모사를 위한 유체-구조 연성 해석

  • Kim, Dae-Gyeom
    • Journal of the KSME
    • /
    • v.56 no.12
    • /
    • pp.46-50
    • /
    • 2016
  • 이 글에서는 유연한 수중 동물들의 다양한 추진 및 감각 기관의 형태와 기능을 이해하기 위한 유체-구조 상호작용 연구와 이를 기반으로 한 자연모사 공학 응용에 대해 소개하고자 한다.

  • PDF

Earthquake Response Analysis of an Offshore Wind Turbine Considering Fluid-Structure-Soil Interaction (유체-구조물-지반 상호작용을 고려한 해상풍력발전기의 지진응답해석)

  • Lee, Jin-Ho;Lee, Sang-Bong;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • In this study, an analysis method for the earthquake response of an offshore wind turbine model is developed, considering the effects of the fluid-structure-soil interaction. The turbine is modeled as a tower with a lumped mass at the top of it. The tower is idealized as a tubular cantilever founded on flexible seabed. Substructure and Rayleigh-Ritz methods are used to derive the governing equation of a coupled structure-fluid-soil system incorporating interactions between the tower and sea water and between the foundation and the flexible seabed. The sea water is assumed to be a compressible but non-viscous ideal fluid. The impedance functions of a rigid footing in water-saturated soil strata are obtained from the Thin-Layer Method (TLM) and combined with the superstructure model. The developed method is applied to the earthquake response analysis of an offshore wind turbine model. The method is verified by comparing the results with reference solutions. The effects of several factors, such as the flexibility of the tower, the depth of the sea water, and the stiffness of the soil, are examined and discussed. The relative significance of the fluid-structure interaction over the soil-structure interaction is evaluated and vice versa.

Engineering Evaluation of Seismic Sity Coefficient in the Korean Bridge Code (국내 도로교시방서 내지설계편의 지반계수에 대한 공학적 영향평가)

  • 조양희;조인범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.123-134
    • /
    • 1998
  • 본 연구에서는 지반상태가 교량의 지진응답에 미치는 영향을 분석하기 위해 다양한 지반모델 상의 교량모델에 대한 지진해석을 수행하고 그 결과를 비교.분석하였다 이를 위해서 기존의 교량시방서에서 분류된 네가지의 서로다른 지반종류를 대상으로 보다 세분된 지반모델 상에 위치하는 대표적인 교량에 대한 지진해석을 수행함으러써 첫째로는 각 지반 종류 상호간의 지진응답 차이의 정도를 시방서 값과 비교.분석하였으며 둘째로는 동일 지반으로 분류되는 상이한 두 지반간의 응답차이의 정도를 확인하였다 해석을 위해서는 시방서에서 제시된 두가지 방법 즉 단일모드 스펙트럼해석법과 다중모드 스펙트럼해석법을 사용하였으며 이들 결과를 별도로 작성된 인공시간이력을 입력으로 하는 시간이력해석법을 사용한 결과와 비교.분석하였다 시간이력해석법에서는 진동수에 무관한 지반임피던스함수를 이용하는 시간영역해석법을 사용하였다 해석결과 시방서에서 제시한 단일모드 및 다중모드 스펙트럼해석방법은 일반적으로 안전측의 지반-구조물 상호작용 해석결과를 주는 것으로 확인되었다 그러나 유연성이 큰 지반 상의 구조물에대한 지진해석을 위한 해석모델 작성시에는 지반의 유연성이 반드시 고려되어야 하며 특히 낙교방지를 위한 변위는 지반의 유연성을 고려한 정밀해석법에 의한 계산이 필수적으로 요구됨을 확인하였다.

  • PDF

Seismic Response of Structure on Flexible Foundation (유연한 기초 위에 세워진 구조물의 지진거동)

  • 김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 1997
  • Seismic analyses of structures were carried out in the past assuming a right base and Ignoring the characteristics of foundations and the properties of the underlying soil. Resent soil-structure interaction studies show that seismic response of structure can be affected significantly by these fators. Typical effects of the soil-structure interaction are the kinematic interaction of a rigid massiess foundation and the inertial interaction between underlying soil and structure. The kinematic interaction effect is particularly important for embedded foundations and can be ignored for surface foundations with vertically propagating waves. In this study, seismic response of structure was investigated with four buildings in Mexico City considering only the inertial interaction effect and using the E-W components of the 1985 Mexico City earthquake records. The study was carried out for surface foundations and pile foundations with linear and nonlinear soil conditions, comparing the results with those of the rigid base.

  • PDF

Seismic Behaviors of Concrete-Suction-Type Offshore Wind Turbine Supporting Structures Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 콘크리트 석션식 해상풍력 지지구조물의 지진거동 특성)

  • Lee, Jin Ho;Jin, Byeong-Moo;Bae, Kyung-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.319-327
    • /
    • 2017
  • In this study, characteristics of seismic behaviors of offshore wind turbine systems using concrete-suction-type supporting structures are investigated. Applying hydrodynamic pressure from the surrounding sea water and interaction forces from the underlying soil to the structural system which is composed of RNA, the tower, and the supporting structure, a governing equation of the system is derived and its earthquake responses are obtained. It can be observed from the analysis results that the responses are significantly influenced by soil-structure interaction because dynamic responses for higher natural vibration modes are increased due to the flexibility of soil. Therefore, the soil-structure interaction must be taken into consideration for accurate assessment of dynamic behaviors of offshore wind turbine systems using concrete-suction-type supporting structures.

Effects of Stiffness Characteristics of Super-Structure on Soil-Structure Interaction (지반(地盤)에 대한 구조물(構造物)의 상대강도(相對剛度)가 지반(地盤)-구조물(構造物) 상호작용(相互作用)에 미치는 영향(影響))

  • Park, Hyung Ghee;Joe, Yang Hee;Lee, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.123-132
    • /
    • 1985
  • The flexibility of base material gives considerable influences on seismic responses of a structure. The effects of relative stiffness between super-structure and base material on dynamic soil-structure interaction are evaluated by parametric studies. Two 5-story buildings are used for the study; one is shearwall structure with relatively higher fundamental frequency and the other is frame structure with relatively lower fundamental frequency. The structures are modeled as beam-sticks coupled with springs and dashpots representing the base material. Dynamic equilibrium equations of the soil-structure interaction system are sloved by mode superposition method using Rosset modal damping values. Soil-structure interaction effect is found to be major concern in seismic analysis of shearwall structure in most cases while it seldom becomes engineering problem in frame-type structure. It is also found that seismic responses at lower elevation of the super-structure are amplified though they decrease at higher elevation as soil-structure interaction effects of the system increase.

  • PDF

Earthquake Response Analysis of Cylindrical Liquid-Storage Tanks Considering Nonlinear Fluid-Structure Soil Interactions (비선형 유체-구조물-지반 상호작용 고려한 원통형 액체저장탱크의 지진응답해석)

  • Jin Ho Lee;Jeong-Rae Cho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.133-141
    • /
    • 2024
  • Considering fluid-structure-soil interactions, a finite-element model for a liquid-storage tank is presented and the nonlinear earthquake response analysis is formulated. The tank structure is modeled considering shell elements with geometric and material nonlinearities. The fluid is represented by acoustic elements and combined with the structure using interface elements. To consider the soil-structure interactions, the near- and far-field regions of soil are modeled with solid elements and perfectly matched discrete layers, respectively. This approach is applied to the seismic fragility analysis of a 200,000 kL liquid-storage tank. The fragility curve is observed to be influenced by the amplification and filtering of rock outcrop motions at the site when the soil-structure interactions are considered.

Seismic Fragility Analysis of Ground Supported Horizontal Cylindrical Tank (수평원통형 저장탱크의 지진취약도 해석)

  • Chaulagain, Nabin Raj;Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.145-151
    • /
    • 2019
  • The fragility analyses for the partially filled horizontal cylindrical tank having a flexible wall were conducted to evaluate seismic performance. An equivalent simplified model with two lumped masses representing to impulsive and convective masses was used to represent the liquid storage system. This simplified model was validated by comparing its time history analysis results with the 3D FSI model results. The horizontal tank was analyzed under bi-directional excitations. Seismic fragility curves for the stability were developed in transverse and longitudinal directions. Fragility curves show that seismic damage for the horizontal storage system is more susceptible in the transverse direction.