• Title/Summary/Keyword: 유연체 시뮬레이션

Search Result 34, Processing Time 0.021 seconds

Design of uC/OS-II Based Telemetry PCM Encoder for Effective Resource Use (효율적인 자원 활용을 위한 uC/OS-II 기반의 텔레메트리 PCM 엔코더 설계)

  • Geon-hee Kim;Bokki Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.315-322
    • /
    • 2024
  • In this paper, we proposes real-time operating system based PCM encoder for telemetry system that must transmit frames within a set time. In the case of large aircraft, the complexity of the system is increasing because a lot of state information is measured from each sensor and peripheral device. In addition, as the amount measurement data increases, the role of PCM encoder to transmit frames within a set time is becoming important. Existing encoder is inflexible when changing specifications or implementing additional features. Therefore, a design is needed to supplement this. We propose a PCM encoder design applying uC/OS-II. In order to confirm the validity, a simulation was performed to measure the execution time of the task to confirm the performance.

Analytical Solution for Attitude Command Generation of Agile Spacecraft (고기동 인공위성의 해석적 자세명령생성 기법 연구)

  • Mok, Sung-Hoon;Bang, Hyochoong;Kim, Hee-Seob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.8
    • /
    • pp.639-651
    • /
    • 2018
  • An analytical solution to generate attitude command profile for agile spacecraft is proposed. In realistic environment, obtaining analytical minimum-time optimal solution is very difficult because of following constraints-: 1) actuator saturation, 2) flexible mode excitation, 3) uplink command bandwidth limit. For that reasons, this paper applies two simplifications, an eigen-axis rotation and a finite-jerk approximated profile, to derive the solution in an analytical manner. The resulting attitude profile can be used as a feedforward or reference input to on-board attitude controller, and it can enhance spacecraft agility. Equations of attitude command profile are derived in two general boundary conditions: rest-to-rest maneuver and spin-to-spin maneuver. Simulation results demonstrate that the initial and final boundary conditions, in terms of time, attitude, and angular velocities, are well satisfied with the proposed analytical solution. The derived attitude command generation algorithm may be used to minimize a number of parameters to be uploaded to spacecraft or to automate a sequence of attitude command generation on-board.

The Improvement of maintainability evaluation method at system level using system component information and fuzzy technique (시스템의 구성품 정보와 퍼지 기법을 활용한 시스템 수준 정비도 평가 방법의 개선)

  • Yoo, Yeon-Yong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.100-109
    • /
    • 2019
  • Maintainability indicates the extent to which maintenance can be done easily and quickly. The consideration of maintainability is crucial to reduce the operation and support costs of weapon systems, but if the maintainability is evaluated after the prototype production is done and necessitates design changes, it may increase the cost and delay the schedule. The evaluation should verify whether maintenance work can be performed, and support the designers in developing a design to improve maintainability. In previous studies, the maintainability index was calculated using the graph theory at the early design phase, but evaluation accuracy appeared to be limited. Analyzing the methods of evaluating the maintainability using fuzzy logic and 3D modeling indicate that the design of a system with good maintainability should be done in an integrated manner during the whole system life cycle. This paper proposes a method to evaluate maintainability using SysML-based modeling and simulation technique and fuzzy logic. The physical design structure with maintainability attributes was modeled using SysML 'bdd' diagram, and the maintainability was represented by an AHP matrix for maintainability attributes. We then calculated the maintainability using AHP-based weighting calculation and fuzzy logic through the use of SysML 'par' diagram that incorporated MATLAB. The proposed maintainability model can be managed efficiently and consistently, and the state of system design and maintainability can be analyzed quantitatively, thereby improving design by early identifying the items with low maintainability.

Mechanism and Spray Characteristics of a Mini-Sprinkler with Downward Spray for Prevention of Drop Water (하향 분사식 미니스프링클러의 낙수방지 메카니즘과 살수 특성)

  • Kim, Hong-Gyoo;Chung, Sung-Won
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.210-216
    • /
    • 2007
  • A study was conducted to find mechanism and spray characteristics of a mini-sprinkler with downward spray to develop a new design type to be able to prevent drop water. The experiments were executed in a plastic greenhouse to minimize the effect of the wind. Data was collected at five different operation pressures and at 4 different raiser heights. Spray characteristics of the sprinkler such as effective radius, effective area, mean application depth, absolute maximum application depth, effective maximum application depth and coefficient of variation were determined. In order to analyze the mechanism and packing supporter of sprinkler, the numerical simulation using ABAQUS was performed. The optimum pressure for preventing drop water was determined.