• Title/Summary/Keyword: 유역고도

Search Result 253, Processing Time 0.033 seconds

The studies of the granite landforms in South Korea (한국의 화강암 지형에 대한 연구)

  • KANG, Tay-Gyoon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.1-15
    • /
    • 2011
  • This work is to review the granite landforms studies by Korean geographers. It is verified that geomorphlogical characteristics of granite present landscapes characterized by 1) in case of mountains, are difficultly or irregularly weathered, so as to develop rocky forms such as domes, cliffs, and tors ; 2) in case of stream valley that is inter-massif lowland, low relief hills and flood plains with alluvium. All these facts owe to the difference of weathering mode granite properties. The granite hills and alluvial plains of southwestern coastal parts in Korean peninsula is low undulatory and large owing not only to the existence of highly weathered granitic regolith, but also to frequent flooding. Cultivated brownish field, orchard, meadow and forest are located at granite hills. On the other hand paddy rice field at granite alluvial plains. Korean peninsula have endured erodible geomorphlogical processes since Miocene when warping it up. Therefore many intermontane basins are located on the weathered granite areas which are surrounded by mountains composed of much less Precambrian gneiss complex. In fact, intermontane basin is mainly linear fault-line valley. The landforms of the intermontane basins are characterized by gentle piedmont slopes, alluvial fans, fluvial terraces and alluvial plains.

Evaluation of Spatial and Temporal Variations of Water Quality in Lake Shihwa and Outer Sea by Using Water Quality Index in Korea: A Case Study of Influence of Tidal Power Plant Operation (수질평가지수를 이용한 시화호 내측 및 외측 해역의 시·공간적 수질 변화 평가: 조력발전소 가동에 따른 영향 연구)

  • Ra, Kongtae;Kim, Joung-Keun;Kim, Eun-Soo;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Sung-Keun;Kim, Eu-Yeol;Lee, Seung-Yong;Park, Eun-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.102-114
    • /
    • 2013
  • The basin of Lake Shihwa is one of highly industrialized region of Korea and a current environmental issue of study area is the operation of tidal power plant (TPP) to improve water quality. The application of water quality index (WQI) which integrates five physiochemical parameters (transparency, DO, DIN, DIP and chlorophyll-a) of water quality in Lake Shihwa and outer sea during 2011~2012 were performed not only to evaluate the spatial and temporal distribution of the water quality but also to assess the effect of water quality improvement by the operation of tidal power plant. The higher WQI values were observed in monitored sites near the industrial complexes in Lake Shihwa and the outfall of wastewater treatment plants (WWTPs) in outer sea. This indicates that the quality of seawater is influenced by diffuse non-point sources from industrial, municipal and agricultural areas in Lake Shihwa and by point sources from the effluence of municipal and industrial wastewater throughout WWTPs in outer sea. Mean WQI value decreased from 53.0 in 2011 to 42.8 in 2012 of Lake Shihwa. Water quality has improved significantly after TPP operation because enhancement of seawater exchange between Lake Shihwa and outer sea leads to improve a hypoxic condition which is primarily a problem in Lake Shihwa. Mean WQI of outer sea showed similar values between 2011 and 2012. However, the results of hierarchical cluster analysis and the deterioration of water quality in summer season indicate that the operation of tidal power plant was not improved the water quality in the upper most area of Lake Shihwa. To successfully improve overall water quality of Lake Shihwa, it is urgently necessary to manage and reduce of non-point pollution sources of the basin of Lake Shihwa.

Application of deep learning method for decision making support of dam release operation (댐 방류 의사결정지원을 위한 딥러닝 기법의 적용성 평가)

  • Jung, Sungho;Le, Xuan Hien;Kim, Yeonsu;Choi, Hyungu;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1095-1105
    • /
    • 2021
  • The advancement of dam operation is further required due to the upcoming rainy season, typhoons, or torrential rains. Besides, physical models based on specific rules may sometimes have limitations in controlling the release discharge of dam due to inherent uncertainty and complex factors. This study aims to forecast the water level of the nearest station to the dam multi-timestep-ahead and evaluate the availability when it makes a decision for a release discharge of dam based on LSTM (Long Short-Term Memory) of deep learning. The LSTM model was trained and tested on eight data sets with a 1-hour temporal resolution, including primary data used in the dam operation and downstream water level station data about 13 years (2009~2021). The trained model forecasted the water level time series divided by the six lead times: 1, 3, 6, 9, 12, 18-hours, and compared and analyzed with the observed data. As a result, the prediction results of the 1-hour ahead exhibited the best performance for all cases with an average accuracy of MAE of 0.01m, RMSE of 0.015 m, and NSE of 0.99, respectively. In addition, as the lead time increases, the predictive performance of the model tends to decrease slightly. The model may similarly estimate and reliably predicts the temporal pattern of the observed water level. Thus, it is judged that the LSTM model could produce predictive data by extracting the characteristics of complex hydrological non-linear data and can be used to determine the amount of release discharge from the dam when simulating the operation of the dam.

Topoclimatological interpretation of the daily air temperature minima at 17 locations crossing over Yangpyeong basin in 1986 spring (봄철 양평지역(楊平地域)의 지형(地形) 및 고도(高度)에 따른 일최저기온(日最低氣溫)의 분포(分布))

  • Kang, An-Seok;Yun, Jin-Il;Jung, Yeong-Sang;Tani, No Bureru
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.4
    • /
    • pp.339-344
    • /
    • 1986
  • Frost damage which can reduce yields, impair fruit quality and cause loss of trees is closely related to the occurrence of daily minimum temperature. Horizontal distribution of air temperature minima can be characterized by conditions of radiational cooling and gravitational movement of cold air, which are influenced by the regional topographic features. Observations were made on the air temperature minima over Yangpyeong area, to delineate potential effects of topography on the temperature pattern during spring season. Two routes were selected for the observation. Liquid glass minimum thermometers were installed at 17 sites through the old peach orchards which had been closed due to the frequent freeze-frost hazards during the recent years. This route was 8.5km long and the highest point was 350m above mean sea level. The other route, which was 2.5km in distance, was run with a digital resistance thermometer during the hour just before sunrise. Observations were made both on a calm-clear day (April 30, 1986) and a windy-overcast day (May 1, 1986). The temperature on April 30 was in increasing trend with elevation but this was modified at near the riverside and the downtown area. An orchard lying on a hilltop showed the temperature $1^{\circ}C$ higher than near by lowland of which elevation was about 30m lower. The minimum temperature on the overcast day was little affected by terrestrial conditions but by the atmospheric lapse condition. The peach orchards severely damaged by cold air were found in the area where the lowest minimum temperature was observed. The results may be useful for selection of the proper orchard location to be developed in an area.

  • PDF

Tectonic Movement in the Korean Peninsula (I): The Spatial Distribution of Tectonic Movement Identified by Terrain Analyses (한반도의 지반운동 ( I ): DEM 분석을 통한 지반운동의 공간적 분포 규명)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.368-387
    • /
    • 2007
  • In order to explain geomorphological characteristics of the Korean Peninsula, it is necessary to understand the spatial distribution of tectonic movements and its causes. Even though geomorphological elements which might have been formed by tectonic movements(e.g. tilted overall landform, erosion surface, river terrace, marine terraces, etc.) have long been considered as main geomorphological research topics in Korea, the knowledge on the spatial distribution of tectonic movement is still limited. This research aims to identify the spatial distributions of tectonic movement via sequential analyses of Digital Elevation Model(DEM). This paper first developed a set of terrain analysis techniques derived from theoretical interrelationships between tectonic uplifts and landsurface denudation processes. The terrain analyses used in this research assume that elevations along major drainage basin divides might preserve original landsurfaces(psuedo-landsuface) that were formed by tectonic movement with relatively little influence by denudation processes. Psuedo-landsurfaces derived from a DEM show clear spatial distribution patterns with distinct directional alignments. Lines connecting psuedo-landsufaces in a certain direction are defined as psuedo-landsurface axes, which are again categorized into two groups: the first is uplift psuedo-landsurface axes that indicate the axis of landmass uplift; and the second is denudational psuedo-landsurface axes that cross step-shaped pusedo-landsurfaces formed via surface denudation. In total, 13 axes of pusedo-landsurface are identified in the Korean Peninsula, which show distinct direction, length, and relative uplift rate. Judging from the distribution of psudo-landsurfaces and their axes, it is concluded that the Korean Peninsula ran be divided into four tectonic regions, which are named as the Northern Tectonic Region, Center Tectonic Region, Southern Tectonic Region, and East Sea Tectonic Region, respectively. The Northern Tectonic Region had experienced a regional uplift centered at the Kaema plateau, and the rate of uplift gradually decreased toward southern, western and eastern directions. The Center Tectonic Region shows an arch-shaped uplift. Its uplift rate is the highest along the East Sea and the rate decreases towards the Yellow sea. The Southern Tectonic Region shows an asymmetric uplift centered a line connecting Dukyu and Jiri Mountains in the middle of the region. The eastern side of the Southern Regions shows higher uplift rate than that of the western side. The East Sea Tectonic Region includes south-eastern coastal area of the peninsula and Gilju-Myeongchun Jigudae, which shows relatively recent tectonic movements in Korea. Since this research visualizes the spatial heterogeneity of long-term tenonic movement in the Korean peninsula, this would provide valuable basic information on long-term and regional differences of geomorphological evolutionary processes and regional geomorphological differences of the Korean Peninsula.

The Accuracy Evaluation of Digital Elevation Models for Forest Areas Produced Under Different Filtering Conditions of Airborne LiDAR Raw Data (항공 LiDAR 원자료 필터링 조건에 따른 산림지역 수치표고모형 정확도 평가)

  • Cho, Seungwan;Choi, Hyung Tae;Park, Joowon
    • Journal of agriculture & life science
    • /
    • v.50 no.3
    • /
    • pp.1-11
    • /
    • 2016
  • With increasing interest, there have been studies on LiDAR(Light Detection And Ranging)-based DEM(Digital Elevation Model) to acquire three dimensional topographic information. For producing LiDAR DEM with better accuracy, Filtering process is crucial, where only surface reflected LiDAR points are left to construct DEM while non-surface reflected LiDAR points need to be removed from the raw LiDAR data. In particular, the changes of input values for filtering algorithm-constructing parameters are supposed to produce different products. Therefore, this study is aimed to contribute to better understanding the effects of the changes of the levels of GroundFilter Algrothm's Mean parameter(GFmn) embedded in FUSION software on the accuracy of the LiDAR DEM products, using LiDAR data collected for Hwacheon, Yangju, Gyeongsan and Jangheung watershed experimental area. The effect of GFmn level changes on the products' accuracy is estimated by measuring and comparing the residuals between the elevations at the same locations of a field and different GFmn level-produced LiDAR DEM sample points. In order to test whether there are any differences among the five GFmn levels; 1, 3, 5, 7 and 9, One-way ANOVA is conducted. In result of One-way ANOVA test, it is found that the change in GFmn level significantly affects the accuracy (F-value: 4.915, p<0.01). After finding significance of the GFmn level effect, Tukey HSD test is also conducted as a Post hoc test for grouping levels by the significant differences. In result, GFmn levels are divided into two subsets ('7, 5, 9, 3' vs. '1'). From the observation of the residuals of each individual level, it is possible to say that LiDAR DEM is generated most accurately when GFmn is given as 7. Through this study, the most desirable parameter value can be suggested to produce filtered LiDAR DEM data which can provide the most accurate elevation information.

Quaternary Geology and Paleoecology of Hominid Occupation of Imjin Basin (임진강유역 구석기 공작의 고생태학적 배경)

  • Seonbok Yi
    • The Korean Journal of Quaternary Research
    • /
    • v.2 no.1
    • /
    • pp.25-50
    • /
    • 1988
  • The survival of rich evidence of palaeolithic occupation found in the Imjin-Hant'an River basin was possible due to many fortuitous geological conditions provided there. Formation of the basalt plain in a narrow valley system which developed during the late Mesozoic insured the appearance of a basin of sedimentation in which archaeological sites would be preserved with relatively minor post-depositional disturbance. Geomagnetic and K-Ar dating indicates that lava flows occurred during the Brunes Normal Epoch. During and after the process of basin sedimentation, erosion of the plain was confined to the major channel of the present river system which developed along the structural joints formed by the lava flow. Due to characteristic columnar structure and platy cleavage of the basalt bedrock, erosion of the basalt bedrock occurred mainly in vertical direction, developing deep but narrow entrenched valleys cut into the bedrock. Consequently, the large portion of the site area remained intact. Cultural deposits formed on top of the basalt plain were left unmodified by later fluvial disturbances due to changes in the Hant'an River base-level, since they were formed about 20 to 40m above the modern floodplain. Sedimentological evidence of cultural deposits and palynological analysis of lacustrine bed formed in the tributary basin of the Hant'an River indicate that hominid occupation occurred in this basin under rapidly deteriorating climatic conditions. From three thermoluminescence dates, the timing of hominid occupation as represented by 'Acheulian-like' bifaces apparently occur sometime during 45,000 BP. Thus, deposition of cultural layers in this basin approximately coincides with the beginning of the second stadial of the final glacial, during which the Korean Peninsula must have had provided a sanctuary for prolonged human occupation.

  • PDF

Validation of Extreme Rainfall Estimation in an Urban Area derived from Satellite Data : A Case Study on the Heavy Rainfall Event in July, 2011 (위성 자료를 이용한 도시지역 극치강우 모니터링: 2011년 7월 집중호우를 중심으로)

  • Yoon, Sun-Kwon;Park, Kyung-Won;Kim, Jong Pil;Jung, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.371-384
    • /
    • 2014
  • This study developed a new algorithm of extreme rainfall extraction based on the Communication, Ocean and Meteorological Satellite (COMS) and the Tropical Rainfall Measurement Mission (TRMM) Satellite image data and evaluated its applicability for the heavy rainfall event in July-2011 in Seoul, South Korea. The power-series-regression-based Z-R relationship was employed for taking into account for empirical relationships between TRMM/PR, TRMM/VIRS, COMS, and Automatic Weather System(AWS) at each elevation. The estimated Z-R relationship ($Z=303R^{0.72}$) agreed well with observation from AWS (correlation coefficient=0.57). The estimated 10-minute rainfall intensities from the COMS satellite using the Z-R relationship generated underestimated rainfall intensities. For a small rainfall event the Z-R relationship tended to overestimated rainfall intensities. However, the overall patterns of estimated rainfall were very comparable with the observed data. The correlation coefficients and the Root Mean Square Error (RMSE) of 10-minute rainfall series from COMS and AWS gave 0.517, and 3.146, respectively. In addition, the averaged error value of the spatial correlation matrix ranged from -0.530 to -0.228, indicating negative correlation. To reduce the error by extreme rainfall estimation using satellite datasets it is required to take into more extreme factors and improve the algorithm through further study. This study showed the potential utility of multi-geostationary satellite data for building up sub-daily rainfall and establishing the real-time flood alert system in ungauged watersheds.

Devonian Strata in Imjingang Belt of the Central Korean Peninsula: Imjin System (임진강대의 중부 고생대층: 임진계)

  • Choi, Yong-Mi;Choh, Suk-Joo;Lee, Jeong-Hyun;Lee, Dong-Chan;Lee, Jeong-Gu;Kwon, Yi-Kyun;Cao, Lin;Lee, Dong-Jin
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.107-124
    • /
    • 2015
  • The 'Imjin System' (or Rimjin System) was established in 1962 as a new stratigraphic unit separated from the Upper Paleozoic Pyeongan System based on the discovery of brachiopods and echinoderms of possible Devonian age. Subsequent discoveries of the Middle Devonian charophytes confirmed the Devonian age of the system. The Imjin System is distributed in the Imjingang Belt between the Pyongnam Basin and the Gyeonggi Massif, spans from the eastern areas including Cholwon-gun of the Gangwon Province, Gumchon-gun, Phanmun-gun, and Tosan-gun of the Hwanghaebuk Province, to the western areas of Gangryong-gun and Ongjin-gun of the Hwanghaenam Province, and includes the Yeoncheon Group (metamorphic complex) to the south. Unlike the lower Paleozoic strata in the Pyongnam Basin which solely produce marine invertebrate fossils, the Imjin System yields diverse non-marine plant and algal fossils. Brachiopods of the system are similar to those from the Devonian of the South China Block and include taxa endemic to the platform, implying a close paleogeographic affinity to the South China Block. The Imjin System is generally considered as of Middle to Late Devonian in age, although there have been suggestions that the system is of the Middle Devonian to Carboniferous in age. North Korean workers postulated that the Imjin System was deposited in the current geographic position, where the "Imjin Sea" (an extension of the South China Platform) was located during the Devonian. The Imjin System displays strong local variations in stratigraphy and its thickness. It has recently been reported that the strata are repeated and overturned by thrust faults in many exposures. The Yeoncheon Group a southward extension of the Imjin System, also experienced intense tight folding and contractional deformation. Northward decrease in metamorphic grade within the system suggests that the northern part of the Gyeonggi Massif and the Imjingang Belt are probably an extension of the Dabie-Sulu Belt between the South China and Sino-Korean blocks, and the Imjin System is an remnant of accretion resulted from the collision between the two blocks. In order to understand tectonic evolution and Paleozoic paleogeography of eastern Asia, further studies on stratigraphic, sedimentologic and tectonic evolution of the Imjin System involving scientists from the two Koreas are urgently needed.

Development and Testing of a RIVPACS-type Model to Assess the Ecosystem Health in Korean Streams: A Preliminary Study (저서성 대형무척추동물을 이용한 RIVPACS 유형의 하천생태계 건강성 평가법 국내 하천 적용성)

  • Da-Yeong Lee;Dae-Seong Lee;Joong-Hyuk Min;Young-Seuk Park
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.45-56
    • /
    • 2023
  • In stream ecosystem assessment, RIVPACS, which makes a simple but clear evaluation based on macroinvertebrate community, is widely used. In this study, a preliminary study was conducted to develop a RIVPACS-type model suitable for Korean streams nationwide. Reference streams were classified into two types(upstream and downstream), and a prediction model for macroinvertebrates was developed based on each family. A model for upstream was divided into 7 (train): 3 (test), and that for downstream was made using a leave-one-out method. Variables for the models were selected by non-metric multidimensional scaling, and seven variables were chosen, including elevation, slope, annual average temperature, stream width, forest ratio in land use, riffle ratio in hydrological characteristics, and boulder ratio in substrate composition. Stream order classified 3,224 sites as upstream and downstream, and community compositions of sites were predicted. The prediction was conducted for 30 macroinvertebrate families. Expected (E) and observed fauna (O) were compared using an ASPT biotic index, which is computed by dividing the BMWPK score into the number of families in a community. EQR values (i.e. O/E) for ASPT were used to assess stream condition. Lastly, we compared EQR to BMI, an index that is commonly used in the assessment. In the results, the average observed ASPT was 4.82 (±2.04 SD) and the expected one was 6.30 (±0.79 SD), and the expected ASPT was higher than the observed one. In the comparison between EQR and BMI index, EQR generally showed a higher value than the BMI index.