• Title/Summary/Keyword: 유압 제어

Search Result 662, Processing Time 0.024 seconds

A study on control of electrohydraulic servosystem with using model reference adaptive contorl theory (모델기준형 적응제어를 이용한 전기유압 서보계의 제어에 관한 연구)

  • Kim, K.H.;Yun, I.R.;PARK, J.B.;Kim, J.K.;Yum, M.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.92-99
    • /
    • 1997
  • A model reference adaptive control(MRAC) theory is very useful for controlling a plant of which the parameters are unknown or vary during operation usint only input-output signal of plant. In this study, 2' nd order discreter time MRAC controller is designed for an electrohydraulic position control system which is represented with nonlinear mathematical model and the least square method is adopted for the para-meter adjustment law. This control algorthm is applied to the position control of electrohydraulic servosystem through computer simulation and the effect of the change of load, sampling time upon the performance following reference model and upon the performance of estimating plant parameters are examined.

  • PDF

Synchronous Position Controller Design of Hydraulic Cylinders for a Sluice Gate Using Fuzzy PI (퍼지 PI를 이용한 배수갑문용 유압실린더의 위치 및 동기 제어기 설계)

  • Choi, Byung-Jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.3
    • /
    • pp.117-120
    • /
    • 2014
  • In general a main technology of control a sluice gate is accurate synchronous position control for the two cylinders when they are moving with the sluice gate together over 10[m]. Because the nonlinear friction and the unconstant supply flow. Cylinders' displacement will be different. In this case the sluice gate may be deformed and abraded, and even the sluice gate may unable to work. In order to design the controller for this system, we designed two kinds of Fuzzy PI controllers. Fuzzy PI position controller and Fuzzy PI synchronous controller have been designed. We show some simulation results for its availability.

Active Control of Structural Vibration Using an Instantaneous Control Algorithm Including Acceleration (가속도가 포함된 순간최적제어 알고리듬을 이용한 구조물 진동의 능동제어)

  • 문석준;정태영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.254-260
    • /
    • 1995
  • 본 연구에서는 제어 알고리듬 적용면에서 가속도 계측이 보다 용이한 점을 고려하여 가속도가 포함된 가속도-속도-변위 되먹임 제어 알고리듬을 개발하고, 이를 유압식 능동 질량구동장치에 적용하여 능동제어시스템의 성능을 실증적으로 검토한다. 이 때 능동제어시스템의 구성요소들의 동특성을 시스템 모델링에 포함하여 제어력을 산정함으로써 시간 지연의 영향을 효과적으로 보상하는 방안을 제시한다.

  • PDF

Research of Hydraulic Breaker with Rock Properties Predictability Using the ICT (ICT 융합기술을 활용한 암반특성 예측기능을 가진 유압 브레이커 개발에 관한 연구)

  • Yoon, Bok Joong;Lee, Kil Soo;Lim, Hoon;Lee, Ho Yeon;Lee, Myung Gyu;Kwon, Hyuk Jin;Kim, Kab Tae;Joo, Jin Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.683-689
    • /
    • 2017
  • We have carried out the development for hydraulic breaker which can be operated by optimal mode with ICT convergence technology. This developed system can predict the rock properties. Moreover, this system can maximize the energy efficient with intelligent control of hydraulic system. In order to provide the optimal impact force, this system can measure the descending depth of piston with the proximity sensor and discriminate the rock properties with the measuring data and control the piston stroke using solenoid valve eventually. In addition, we have developed the controller, display module and operating device for cascade (multi-level impact) system and applied the module which can communicate each system by wireless communications. In conclusion, the control system which can control the multi-level impact in accordance with strength of rocks has been developed and approved by several field tests.

Sluice Gates Control Monitoring of Oil Pressure-Machine Using FDC Tuning Control Technique (FDC 동조제어기법을 이용한 유압-기계식 수문 제어 모니터링)

  • Heo, Gwanghee;Kim, Chunggil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.337-342
    • /
    • 2010
  • Generally most sluice gates are closed and opened by a mechanical winch, a winch using an oil-pressure, or a winch mixing both. Because of their size and structure, they should be safely operated with more than two pulling devices helping each other. At the moment of their opening and closing, there usually occur some additional loads to the structure which cannot be exactly measurable at the stage of designing. Such additional loads can cause the sluice gate to be unbalanced and make it hard to open and close the gate, and by also overloading a winch, they can inflict a significant damage to the safety of the sluice gate. This paper explains a FDC(Force-Displacement Control) system which simultaneously considered the oil-pressure and displacement in order to evenly distribute the force and make a winch balanced at the opening and closing motion. This FDC system was implemented by means of the PID(Proportional Integral Derivative) function of XG 5000 program. It was experimented on a model of the sluice gate winch with the hydraulic oil pressure cylinder. The experiments showed that the developed FDC system made the winch of hydraulic oil pressure cylinder open and close cooperatively in spite of various external loads. Therefore the FDC system is proven effective when it is applied to a winch of sluice gate.

Dynamic Characteristics Analysis for Optimal Design of Flow Divider Valve (Flow Divider Valve의 최적설계를 위한 동특성 해석)

  • Hwang, Tae-Yeong;Park, Tae-Jo
    • 연구논문집
    • /
    • s.29
    • /
    • pp.123-130
    • /
    • 1999
  • Flow divider valve, a kind of hydraulic control valve to divide the flow from one input line to two output line uniformly, should be able to keep the constant flow to output lines despite of the change load or supply pressure. Having 5-10% flow diving error in commercial hydraulic products is one of main source of the accumulated error caused hydraulic system problem and demands the development of flow divider valve to control flow more accurately, In this paper, the dynamic characteristics of flow divider valve are investigated by the numerical estimation of the spool motion considered the external supply force. The optimum design of flow divider valve are proposed to reduce the flow diving error. For the dynamic characteristics analysis, the change of sectional area of fixed and variable orifice, and spool are studied when the input signal is accepted to a constant load.

  • PDF

Inducement of Design Parameters for Reliability Improvement of Servo Actuator for Hydraulic Valve Operation (유압밸브 구동용 서보 액추에이터의 신뢰성 향상을 위한 설계 파라미터 도출)

  • Sung, Baek Ju;Kim, Do Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.475-482
    • /
    • 2014
  • The precision hydraulic valve is widely used in various industrial field like aircraft, automobile, and general machinery. Servo actuator is the most important device for driving the precise hydraulic valve. The reliable operation of servo actuator effects on the overall hydraulic system. The performance of servo actuator relies on frequency response and step response according to arbitrary input signal. In this paper, we performed the analysis for the components of servo actuator to satisfy the reliable operation and response characteristics through the reliability analysis, and also induced the design parameters to realize the reliable operation and fast response characteristics of servo actuator for hydraulic valve operation through the empirical knowledge of experts and electromagnetic theories. We suggested the design equations to determine the values of design parameters of servo actuator as like bobbin size, length of yoke and plunger and turn number of coil, and verified the achieved design values through FEM analysis and performance tests using some prototypes of servo actuators adapted in hydraulic valve.

Multi-function Control of Hydraulic Variable Displacement Pump with EPPR Valve (전자비례감압밸브를 이용한 가변용량형 유압펌프의 다기능 제어)

  • Jung, Dong-Soo;Kim, Hyong-Eui;Kang, E-Sok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.160-170
    • /
    • 2006
  • If hydraulic pump controlled by mechanical type regulator has more than one control function, the construction of regulator will be very complicated and control performance falls drastically. It is difficult to have more than one control function for hydraulic pump controlled by electronic type hydraulic valve due to the inconsistency of controllers. This paper proposes a multi-function control technique which controls continuously flow, pressure and power by using EPPR(Electronic Proportional Pressure Reducing) valve in swash plate type axial piston pump. Nonlinear mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. A reaction spring is installed in servo cylinder to secure the stability of the control system. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.