• Title/Summary/Keyword: 유압 실린더

Search Result 205, Processing Time 0.027 seconds

A Study on the Development of Hydraulic Cylinder with Magnetic Sensors for Detecting Absolute and Precise Position (자기센서를 이용한 절대위치 검출형 고정도 유압 실린더 개발에 관한 연구)

  • 박민규;이민철;양순용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.156-160
    • /
    • 1997
  • This paper introdues the development of hydraulic cylinder with magnetic sensor detecting absolute and precise position for automation of excavator. The system which is developed can detect absolute position witha little displacement by using algorithm for recognizing datum points, 1/4 divider algorithm and high precision algorithm improved position precision and robustness to noise etc. The solenoid valve and PWM control using saw-toothed wave are used for absolute position control of cylinder, respectively

  • PDF

The Effect of Impact Absorbing System Deformation According to the Variation of Cylinder Wall Dimensions on Damping Coefficient (실린더 벽면 치수변화에 따른 변형이 충격흡수장치 감쇠계수에 미치는 영향)

  • 한근조;안찬우;안성찬;심재준;김성윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.765-768
    • /
    • 1997
  • Many malfunctions take place in container crane spreader due to impact. So we designed a hydraulic impact absorbing equipment to absorb the impact and we studied the change of damping coefficient with respect to the variation of dimensions of oil-cylinder wall. When we design the dimension of hydraulic cylinder wall considering the displacement on the wall, the value of it over 20mm didn't affect the damping coefficient.

  • PDF

An Experimental Study on Dynamic Pressure Characteristics in the Cylinder Bore of Oil Hydraulic Axial Piston Pump (유압 액셜 피스톤 펌프의 실린더 보어 내부 비정상 압력 특성에 관한 실험적 연구)

  • Kim, Jong-Gi;Jeong, Seok-Hun;Jeong, Jae-Yeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.74-81
    • /
    • 2001
  • Dynamic pressure is one of the major sources on noise emission in oil hydraulic piston pump. This paper reports an experimental study of dynamic pressure characteristics in the cylinder bore of oil hydraulic piston pump. We experimently measured dynamic pressure at BDC with delivery pressure, rotational speed and oil temperature. Because the V-grooves at the ends of the kidney ports with three types valve plates. We hope this paper help to design of the valve plate in oil hydraulic piston pump.

  • PDF

Developing Analysis Model of Hydraulic System for Dental Chair (치과용 유니트체어 유압구동 시스템 해석모델 개발)

  • Dae Kyung Noh;Dong Won Lee;Taek June Kim;Joo Sup Jang
    • Journal of Drive and Control
    • /
    • v.20 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • From the perspective of dental chair manufacturers, it is important to of localizing hydraulic system in order to secure market competitiveness. This study aims to develop the analysis model of a dental chair which overseas companies secure core technologies. The study follows the steps below. First, the component parts of the solenoid valve unit of a foreign leading company are analyzed and implemented in virtual environment. Second, dynamic behavior scenario is established based on solenoid valve signal chart provided by a foreign leading company. The analysis model is verified and its performance is analyzed using dynamic behavior according to each scenario. Third, a simulation is carried out to determine whether the cylinder velocity of designed hydraulic system surpasses 1cm/s as required by the design.

Adaptive Discrete Time Sliding-Mode Tracking Control of a Proportional Control Valve-Hydraulic System in the presence of friction (비선형 마찰특성을 고려한 비례제어밸브·유압실린더계의 적응 이산시간 슬라이딩모드 추적제어)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.756-762
    • /
    • 2009
  • As nonlinear friction, stick-slip friction in hydraulic actuators are a problem for accuracy and repeatability. Therefore friction compensation has been approached through various control algorithms. A Adaptive discrete time sliding mode tracking controller has been applied in order to compensate the nonlinear friction characteristics in a hydraulic Actuator. Based on the diophantine equation, a new discrete time sliding function is defined and utilized for the control law which includes a friction and modeling error. Robustness is increased by using both a projection algorithm and a sliding function-based nonlinear feedforward. From the results of simulation and experiment good tracking performance is achieved.

  • PDF

Fault Diagnosis for High Pressure Turbine Valve using Fuzzy Logic (퍼지 논리를 이용한 원자력 발전소 고압터빈 밸브 고장진단)

  • Kim Yeon-Tae;Jeong Byeong-Uk;Baek Gyeong-Dong;Kim Seong-Sin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.79-82
    • /
    • 2006
  • 본 논문은 원자력 발전소의 주요 제어계통 중에서 터빈 조속기 제어계통에 관련한 성능평가를 목적으로 한다. 터빈 조속기 계통은 고압의 유압계통으로 구성되어 있어 구동설비가 복잡하다. 복잡한 기계설비는 운전 중 많은 오동작에 의한 고장을 일으키고, 유지보수에 어려움이 있다. 이러한 복잡한 기계설비에 있어 운전원에 의한 기계성능 평가는 불리한 점이 많다. 예를 들어 서로 다른 시간에서 일어나는 같은 상황에 대해 다른 판단을 내릴 수 있다는 점이다. 터빈 조속기 계통의 기계설비에 있어서 터빈 밸브 유압공급 및 구동장치는 각 터빈벨브 자체에 부착되어 있어 터빈벨브를 동작시킨다. 터빈벨브들은 구동기 유압 서보실린더(Actuator Hydraulic Servo Cylinder)에 의해 열리고 압축된 스프링에 의해 닫힌다. 이러한 시스템을 진단하기 위해서 본 논문에서는 밸브의 내부 압력의 특징정보를 입력으로 하는 퍼지이론을 적용하여 터빈 밸브 구동설비의 성능을 판단하고자 한다. 퍼지이론에 적용하기위해 터빈 조속기 제어계통의 고압 터빈 조절 벨브와 고압 터빈 정지 밸브의 압력변화 데이터를 이용한다. 퍼지이론의 적용과정에서 퍼지 Rule은 실제 운전원이 압력변화 데이터에 대한 판단기준을 근거로 하여 정하기로 한다. 그리고 퍼지이론에 적용한 결과를 분석하고 실제 터빈 조속기 계통의 전문가가 판단 결과와 비교하였다.

  • PDF

Performance Analysis of an Electro-Hydrostatic Actuator (Electro-Hydrostatic Actuator의 성능해석)

  • Kim, Do-Hyun;Kim, Doo-Man;Hong, Yeh-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.316-322
    • /
    • 2007
  • The EHA(Electro-hydrostatic Actuator) reveals completely different characteristics from the conventional valve-controlled Electro-hydraulic actuators. In this paper, its mathematical model including nonlinear elements was derived to be verified by experiments. Based on this, a simulation program was developed for the EHAs consisting of an electric motor driven hydraulic pump, pipe lines and a cylinder. The influence of important design parameters such as peak motor torque and rotational inertia moment of the hydraulic pump on control performance was investigated, where the test condition was intentionally selected so that the motor torque was saturated during the transient phase. As a result, design requirements for improving the control accuracy under full speed operation conditions of the EHAs were investigated.

System Design and Performance Test of Hydraulic Intensifier (유압 충격압력 발생기의 시스템 설계와 성능평가)

  • Kim, Hyoung-Eui;Lee, Gi-Chun;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.947-952
    • /
    • 2010
  • Components such as pressure vessel, hydraulic hose assembly, accumulator, hydraulic cylinder, hydraulic valve, pipe, etc., are tested under the impulse-pressure conditions prescribed in ISO and SAE standards. The impulse pressure test machine needs to have a high pressure, a precise control system and a long life. It should satisfy the requirements for fabrication of the impulse tester to generate ultra high pressure in the hydraulic system. In the impulse tester, a servo-valve control system is adopted; although the control application is convenient, it is expensive owing to the cost of developing the system. The type of the control system determines the pressure wave, which affects the components that are tested. In this study, the manufacturing process and the intensifier system design related to the flow, pressure, and the increasing rate of pressure are investigated. The results indicate the ultra high pressure waves in the system.

Design of Hydraulic cylinder for Kinetic Performance Test of Tilting Mechanism (틸팅 메커니즘 기구학적 성능평가를 위한 유압 실린더 설계)

  • Kim, Ho-Yeon;Nam, Jin-Wook;Lee, Joon-Hwan;Kim, Bong-Tak
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1124-1127
    • /
    • 2011
  • In this paper, kinematic performance of the tilting mechanism, hydraulic cylinder was designed for the evaluation. ESW GmbH is attached to the existing electric tilting actuator's performance based on the similar system, each operated by tilting the balance in order to effectively balance has been designed by an independent hydraulic system. In addition, the behavior of the hydraulic system for storing and analyzing information about UI (User Interface) was also included in the design.

  • PDF

A study on digital control of the single-rod hydraulic cylinder using variable (가변구조이론을 이용한 편로드 유압실린더의 디지탈제어)

  • 이교일;김동춘
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1133-1138
    • /
    • 1991
  • A control of nonlinear system is motivated by the fact that all real plants are nonlinear systems and model identification introduces parameter errors. The purpose of this study is to design a Discrete Variable Structure Controller(DVSC) for single-rod hydraulic cylinder system. The model contains uncertain parameters which we known to lie upper and lower bounds. In the design of DVSC, the boundary layer concept was adopted to reduce cattering. The DVSC was evaluated through digital computer simulation and compared with a VSC (analog controller).

  • PDF