• Title/Summary/Keyword: 유압 시스템

Search Result 738, Processing Time 0.023 seconds

A Study on the Characteristic Analysis of the Load-sensitive Hydraulic Pump Control System (부하 감응형 유압 펌프 제어 시스템의 특성 해석에 관한 연구)

  • 이용주;이승현;송창섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.148-154
    • /
    • 2000
  • In this study, the static and the dynamic characteristics of the load-sensitive hydraulic pump control systems of a hydraulic excavator were analyzed using the developed analysis tool. The results were compared with the experimental ones. To improve the static performance of the system, the system parameter effects on the controllable region and the pump pressure variation were studied. The parameters enhancing dynamic characteristics were also considered.

  • PDF

A Position Control of Nonlinear Hydraulic System using Variable Design-Parameter Fuzzy PID Controller (가변 설계 파라미터 퍼지 PID 제어기를 이용한 비선형 유압시스템의 위치 제어)

  • 김인환;김종화;김진규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.136-144
    • /
    • 2004
  • In general a hydraulic system which uses a single rod hydraulic as an actuator is modeled as a nonlinear system and reveals uncertain Parameter characteristics such as the density variation of hydraulic oil and is subject to load variations and severe disturbances during operation. A variable design-parameter fuzzy PID controller is adopted to solve these undesirable internal and external problems and its effectiveness is verified through computer simulations for control performance and real time control possibility.

Load compensation and Speed Controller for Hydraulic Inverter-fed Elevator (유압 인버터 엘리베이터를 위한 부하 보상 및 속도 제어기)

  • Han, Sang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.163-167
    • /
    • 2014
  • To prove the vibration and speed error problems caused by the nonlinear friction characteristics and load variation of the hydraulic system, a PID speed controller and a load compensation controller for the hydraulic inverter-fed elevator are proposed. The load compensation controller is composed by the PI controller and the speed controller is composed by the PID controller. The P,I and D gains of the control parameters are obtained by the frequency response of system transfer function. The Effectiveness of the proposed controller are shown by experimental results, which the proposed controller yields robustness with load variations and stable and good speed and acceleration responses with less oscillations.

A Study on the Hydraulic System Circuit Analysis and Modeling of the Hydrostatic Tire Roller (유압 구동방식 타이어 롤러를 위한 유압 시스템 회로분석 및 모델링에 관한 연구)

  • Kim, Sang-Gyum;Park, Chun-Shic;Kim, Jung-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.432-439
    • /
    • 2003
  • In this research, we are trying to develop the new hydraulic driven tire roller which is conventionally operated by mechanical transmission system. The reason why we would like to develop it is that tire roller is one of the most useful machine for the road construction site and also imported totally from overseas. In this paper, we conceptualize the new hydraulic system and derive the equations of motion for dynamic analysis. And we investigate system modeling by using DAQ system. Finally, we will design the controller, which can manage the hydraulic circuit of steering and traction mechanism system. The advent of modern high-speed computers coupled with the application of high-fidelity simulation technology can be used to create “virtual prototypes of construction equipment. Tests conducted on these virtual prototypes may be used to augment actual machine testing, thereby lowering costs and shortening time to production. So, we studied tire roller to integrate development technology. In System Analysis, We formulate hydraulic driving system model and hydraulic steering system model. Also, We integrate DAQ system to acquire experimental result in real tire roller equipment.

A Study on Dynamic Characteristics of Hydraulic Transmission Line by Finite Difference Method (有限差分法을 利용한 油壓管路의 特性에 관한 硏究)

  • 오철환;정선국;송창섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.15-24
    • /
    • 1986
  • Pressure trasients must deal with safety problem of system. For identification of physical situation that can and method of limiting surges are essential consideration in sucessful design. The finite difference equation by method of characteristics are derived from the governing equation of unsteady flow in a pipe, and solved by using boundary condition derived. A computer program which can simulate general hydraulic system is developed by using finite difference equations and boundary conditions derived. The sumulated resulted by developed computer program are in fair agreement with experiment result.

A Development of Digital Control System for Hydraulic Fatigue Testing Machine (유압 피로시험기용 디지털 제어시스템 개발)

  • Kim J. W.;Ahn J. B.;Kang D. H.;Lee S. M.;Shin B. C.;Park J. W.;Park K. B.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.443-445
    • /
    • 2004
  • 일반적으로 기계장치나 구조물 등은 여러 가지형태의 반복하중을 받게 되며, 이러한 하중의 크기가 항복강도 이하에 있어서도 반복 피로 현상에 의해서 파괴되는 경우가 있다. 유압 피로시험기는 기계장치나 구조물의 재료나 부품에 대한 피로시험을 통하여 피로강도나 신뢰성 등을 시험하기 위한 장비이고, 본 논문에서는 유압 피로 시험기를 제어하고 데이터를 취득할 수 있는 제어시스템의 개발에 대해 서술하였다.

  • PDF

A study on the non-standard PID control for electro-hydraulic servo system (전기 유압 서어보 시스템의 비표준 PID 제어에 관한 연구)

  • Lee, Yong-Joo;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.25-33
    • /
    • 1997
  • This study deals with controlling the velocity of Electr-Hydraulic servo system through the non-stan-dard PIC control. This was done as follows. First, we modeled nonlinearised model and linearised model, second designed analytic program for electro-hydraulic servo system velocity control Lastly, to im- prove dynamic characteristics of system we designed non-standard PID contoller and verifed throughth experi- ment and MATLAB program, commercial used software.

  • PDF

A Study on Energy Saving Hydraulic Cylinder System Using Hydraulic Transformer (유압 트랜스포머를 이용한 유압 실린더의 에너지 절감에 관한 연구)

  • Lee, Min-Su;Cho, Yong-Rae;Yoon, Hong-Soo;Ahn, Kyoung-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • In order to reduce energy consumption, secondary controlled system has been applied to many types of equipments. In lifting equipments or press machines using hydraulic cylinder, a hydraulic transformer is used as a control component instead of a valve for motion control and a component for recovering potential energy of load. The transformer is a combination of a variable displacement pump/motor as a secondary controlled element and a fixed displacement pump/motor. In this paper the effect of transformer is studied. Multiple closed loop controllers with displacement feedback of variable pump/motor, speed feedback and position feedback of cylinder are used. The efficiency and energy consumption when cylinder is driven up and down is calculated by simulation. Simulation results show that considerable energy saving is achieved by choosing load ratio, circuit type and supply pressure.

Pressure Ripple Reduction in Hydrostatic Transmissions by Using a Hydraulic Filter (맥동흡수용 유압필터에 의한 유압전동장치의 압력맥동 감쇠)

  • 김도태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.33-38
    • /
    • 2002
  • This paper deals with pressure ripple attenuation far separated-type Hydrostatic Transmission (HST) consisting ova variable axial piston pump connected in an open loop to a fried displacement axial piston motor. Pressure ripples in HST is major source of vibration which can lead to fatigue failure of components and cause noise. In order to reduce the pressure ripple, an annular tube tripe hydraulic filter is proposed to attenuate pressure ripples with the high frequencies components to achieve better noise reduction in HST. The basic principle of a hydraulic filter is allied to propagation of pressure wave, reflection, absorption in cross section of discontinuity and resonance in the hydraulic pipeline. It is experimentally shown that the hydraulic filter attenuates about 30∼40dB of pressure ripple with high frequencies. These results will assist in modeling and design of noise reduction in hydraulic control systems, and provide a means of designing a quieter HST.

Semiactive Control for Structural Vibration Mitigation (구조물 진동 저감을 위한 반능동 제어)

  • Changki Mo;Jaesoo Lee
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.96-103
    • /
    • 2001
  • Past research has repeatedly demonstrated the fact that hydraulic semiactive systems, if operated Properly, can provide levels of control authority in structural vibration control systems that are comparable to a fully active hydraulic damper. The performance of the semiactive system when used to provide vibration mitigation for a laboratory test structure is described in this paper Numerical and experimental verification of the effectiveness of the proposed bistate controller which relies on a Lyapunov approach that seeks to dissipate the energy of the system is also presented. The results based on the bistate control are compared with those of two different control strategies. The work indicates that hydraulic semiactive actuator provides a reliable, and inexpensive means of achieving structural control.

  • PDF