• Title/Summary/Keyword: 유압제어시스템

Search Result 410, Processing Time 0.025 seconds

Design of Control System for Hydraulic Cylinders of a Sluice Gate Using Fuzzy PI Algorithm (퍼지 PI를 이용한 배수갑문용 유압실린더 제어기 설계)

  • Hui, Wuyin;Choi, Chul-Hee;Choi, Byung-Jae;Hong, Chun-Pyo;Yoo, Seog-Hwan;Kwon, Yeung-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.109-115
    • /
    • 2010
  • A main technology of opening and closing a sluice gate is accurate synchronous and position control for the two cylinders when they are moving with the sluice gate together over 10[m]. Since the supply flow and supply pressure of cylinders are not constant and a nonlinear friction force of the piston in cylinders exists, a difference will be made between the displacement of two cylinders. This difference causes the sluice gate to deform and abrade, and even it may be out of order. In order to solve this problem we design two kinds of fuzzy PI controllers. The former is for a position control of two cylinders, the latter is for their synchronous control. We show some simulation results compare the performance of fuzzy PI controller to the conventional PID controller.

Design and Assessments of a Closed-loop Hydraulic Energy-Regenerative System (폐루프 유압 에너지 회생 시스템에 관한 연구)

  • Hung, H.T.;Yoon, J.I.;Ahn, K.K.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.116-125
    • /
    • 2010
  • In this study, a novel hydraulic energy-regenerative system was presented from its proposal through its modeling to its control. The system was based on a closed-loop hydrostatic transmission and used a hydraulic accumulator as the energy storage system in a novel configuration to recover the kinetic energy without any reversion of the fluid flow. The displacement variation in the secondary unit was reduced, which widened the uses of several types of hydraulic pump/motors for the secondary unit. The proposed system was modeled based on its physical attributes. Simulation and experiments were performed to evaluate the validity of the employed mathematical model and the energy recovery potential of the system. The experimental results indicated that the round trip recovery efficiency varied from 22% to 59% for the test bench.

  • PDF

A Study on Development of the Characteristic Analysis and CAD System for Hydraulic System Using Modular Approach (모듈화를 이용한 유압 시스템의 특성해석 및 설계 시스템의 개발에 관한 연구)

  • Lee, Yong-Joo;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.40-48
    • /
    • 1997
  • In this study, an analysis and design for hydraulic control system was developed. By using this system, the operator is able to simulate dynamic performance of the system without possessing special knowledge of software or control engineering. A graphical user interface was adopted in the system and all speration for simulation can be done by using window facilities on the display. The electro-hydraulic servo system is simulated to present the performances of the program and compared with the result of Matlab and experiment.

  • PDF

Robust Control of a 6-Link Electro-Hydraulic Manipulator using Parallel Feed forward Compensator (PFC보상기를 응용한 6축 전기 유압매니퓰레이터의 강인 제어)

  • 안경관;정연오
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.89-96
    • /
    • 2003
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear abetments, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable but also accurate trajectory control for the autonomous assembly tasks using hydraulic manipulators. In this report, we propose a two-degree-of-freedom control including parallel feedforward compensator (PFC) where PFC plays a very important role in the stability of a proposed control system. In the experimental results of the 6-link electro hydraulic manipulator, it is verified that the stability and the model matching performance are improved by using the proposed control method.

Model Indentification and Discrete-Time Sliding Mode Control of Electro-Hydraulic Systems (전기-유압 서보 시스템의 모델규명 및 이산시간 슬라이딩 모드 제어)

  • 엄상오;황이철;박영산
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.94-103
    • /
    • 2000
  • This paper describes the model identification and the discrete-time sliding mode control of electro-hydraulic servo systems which are composed of servo valves, double-rod cylinder and load mass. The controlled plant is identified as a 3th-order discrete-time ARMAX model obtained from the prediction error algorithm, where a nominal model and modeling errors are zuantitatively constructed. The discrete sliding mode controller for 3th-order ARMAX model is designed in discrete-time domain, where all states are observed from Kalman filter. The discrete sliding mode controller has better tracking performance than that obtained from continuous-time sliding mode controller, in experiment.

  • PDF

Control of an Electro-hydraulic Servosystem Using Neural Network with 2-Dimensional Iterative Learning Rule (2차원 반복 학습 신경망을 이용한 전기.유압 서보시스템의 제어)

  • Kwak D.H.;Lee J.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • This paper addresses an approximation and tracking control of recurrent neural networks(RNN) using two-dimensional iterative learning algorithm for an electro-hydraulic servo system. And two dimensional learning rule is driven in the discrete system which consists of nonlinear output function and linear input. In order to control the trajectory of position, two RNN's with the same network architecture were used. Simulation results show that two RNN's using 2-D learning algorithm are able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two same RNN was very effective to control trajectory tracking of electro-hydraulic servo system.

  • PDF

Hydraulic System Simulation and Vehicle Dynamic Modeling for the Analysis and Development of Tire Roller Prototype (유압 구동식 타이어 로울러 Prototype의 유압 시스템 설계 및 차량 동역학적 모델링)

  • 박춘식;김준호;김상겸;김정하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.137-137
    • /
    • 2000
  • In this research. we developed Tire Roller Prototype which is operated hydraulic transmission system. For develop the theoretically computer aided system, we practiced the simulation of hydraulic system and dynamic modeling and will compare with the experiment results of Tire Roller Prototype. We conceptualize the new hydraulic system and derive the equations of motion for dynamic analysis. Finally, we will design the controller, which can manage the hydraulic circuit of servo mechanism system. We define new hydraulic system and integrate modeling of Tire Roller through simulation of h\ulcornerdraulic system and design of controller. From above procedure. Hydraulic transmission system characteristics and target performance can be investigated. To follow the required performance, we select the parts of Tire Roller. We manufactured the prototype of Tire Roller, and will install the equipment for experiment.

  • PDF

Analysis of Hydraulic Control System for Shuttle Power-shift Transmission (전후진 파워시프트 변속기 유압 제어 시스템 해석)

  • Kim, D.C.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.4
    • /
    • pp.16-23
    • /
    • 2009
  • The major system of an agricultural shuttle power-shift tractor is the transmission, using power-shift. Because the shifting performance depends on the hydraulic control system, the most important aspect of the optimization is the design of the hydraulic control system. This study was conducted to develop the simulation model of hydraulic control system for the shuttle power-shift transmission by using Easy5 software. Bench test was conducted to verify the simulation. Also, the design parameters which influence the pressure modulation characteristics were investigated.

  • PDF

Flow/Pressure/Power Control of Hydraulic Pump Utilizing Switching Control Mode (스위칭 제어 모드를 이용한 유압펌프의 유량/압력/동력 제어)

  • Jung, D.S.;Kim, H.E.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.4
    • /
    • pp.8-14
    • /
    • 2007
  • The electro-hydraulic pump is usually used in testing equipments which require one control function. But until now, it is not applied to industrial equipments which are exposed to severe working environment and require various control functions. This paper proposes a technique which controls continuously flow, pressure and power by utilizing switching control mode. Mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.

  • PDF