• 제목/요약/키워드: 유압밸브

검색결과 245건 처리시간 0.021초

유전자 알고리즘을 이용한 2단 릴리프 밸브의 최적설계 (An Optimal Design of a two stage relief valve by Genetic Algorithm)

  • 김승우;안경관;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.501-506
    • /
    • 2002
  • In this study, a novel systematic design procedure by Genetic Algorithm of a two stage relief valve is proposed. First of all. a mathematical model describing the dynamics of a balanced piston type relief valve has been derived. Governing equations such as dynamic equations for the main spool and the pilot spool and flow equations for each orifice are established. The mathematical model is verified by comparing the results of simulation with that of experiments. Furthermore, influences of the parameters on the dynamic characteristics of a relief valve have been investigated by simulation of the proposed model. Major design parameters on the valve response are determined, which affect the system response significantly. And then, using the determined parameters, the optimization of the two stage relief valve by Genetic Algorithm, which is a random search algorithm can find the global optimum without converging local optimum, is performed. The optimal design process of a two stage relief valve is presented to determine the major design parameters. Fitness function reflects the changing pressure according to parameters. It is shown that the genetic algorithms satisfactorily optimized the major design parameters of the two stage relief valve.

  • PDF

지능재료를 이용한 차세대 철도차량기술 (Advanced Railway Vehicle Technology using Smart Materials)

  • 김재환;강부병;김형진;정홍채;최성규
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.712-717
    • /
    • 2003
  • 지능 재료를 이용한 디바이스는 자연계에 존재하는 생명체와 같이 내.외부 환경 변화에 대응하여 스스로 변하는 능동적 기능을 갖고 있기 때문에 시스템 성능의 극대화 및 유지비용의 최소화를 가져오게 된다. 이러한 지능재료 기술은 지난 10여년 전부터 연구되었는데 대표적인 웅용을 보면, 산업, 항공, 교통, 운송 분야의 능동 소음 및 반능동 진동제어; 복합 재료 손상위치 탐지시스템, 손상구조 건전성 평가시스템, 교량, 저장탱크, 건물, 유조선, 대형 구조물의 건전성 평가 시스템; 초정밀 직진 안내기구, 나노 스테이지, 절삭오차 보정용 엑츄에이터, 초음파 회전모터, 지능유압 서보밸브, 변형 거울 등의 모터/엑츄에이터; 자동차 엔진 성능제어, 흡배기구 압력측정, 가속도 센서, 자이로센서, 에어백 센서, 타이어 센서 등의 지능 MEMS/NEMS 센서; electronic article 정찰, 도서태그, 비접촉 항공 운송물 분류 및 보안시스템, 전자 운전자 식별시스템, 광섬유 건물 보안 시스템, 지능 신경망 형상 인식 시스템 등의 보안 시스템; 지능항공기 구조물, 인공위성안테나, 헬리콥터 회전익 등의 형상제어가 있다. 본 논문에서는 지능재료 기술을 정리하고 차세대 철도차량 기술에 지금까지 적용한 예를 소개하며 향후 적용할 수 있는 분야들을 가능성 및 실용성 면에서 소개하고자 한다.

  • PDF

드리프터의 유압시스템 해석모델 개발 및 신뢰성 검토 (Development of Drifter's Hydraulic System Model and Its Validation)

  • 노대경;장주섭;서자호;김흥섭;박승현
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권3호
    • /
    • pp.14-21
    • /
    • 2014
  • The goal of this study drifter is to understand the operating mechanism of a drifter and to suggest a reliable analysis model which can be used for evaluating the drifter's performance from the viewpoint of impact frequency and energy. For this, the working principle of drifter and functions of its main components were analyzed, and a simulation model was developed based on the analysis. The model was validated using experimental tests on a test-bench. A comparative study of simulation and experimental results indicated that the suggested model accurately represents the real drifter system in terms of impact frequency and impact energy per blow.

산업용 유압펌프 및 솔레노이드 밸브 재제조품의 내구성 평가 (A Durability Evaluation of Remanufactured Industrial Hydraulic Pump and Solenoid Valve)

  • 이규창;박상진;손우현;전창수;목학수
    • 한국산업융합학회 논문집
    • /
    • 제24권5호
    • /
    • pp.537-546
    • /
    • 2021
  • Remanufacturing is one of the most important resource recycling technology in response to resource depletion and environmental pollution. Domestic remanufacturing industry don't invigorate compared to other advanced countries because of low price and reliability of remanufactured product. In this study, remanufactured hydraulic pump and solenoid valve were evaluated durability by accelerated life test. In order that standard remanufacturing process was developed by core analysis and failure mode and effect analysis. And cores were remanufactured by standard remanufacturing process. For accelerated life test, the evaluation item and criteria were deduced by results of FMEA, reliability standards and enterprise interior criteria. To evaluate durability of remanufactured product, the remanufactured hydraulic pump and solenoid valve were evaluated performance after accelerated life test and the results were satisfied with criteria. This study showed that remanufactured products have a similar level of durability to new products by definition of remanufacturing.

자주식 시금치 수확장치 해석모델을 활용한 유압시스템 개선 설계 제안 (Improving Hydraulic System Design by Analysis Model of a Self-propelled Spinach Harvester)

  • 노대경;이동원;이종수;장주섭
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권1호
    • /
    • pp.69-75
    • /
    • 2022
  • This study aimed to develop solutions for the intermittent performance deterioration of self-propelled spinach harvesters through analysis model. The study was conducted in the following manner. First, changes in performance deterioration and surplus flow, which result from oil temperature changes, were analyzed by simulating actual sequential harvesting movements, which involve driving with actuators operated simultaneously, by analysis model developed in a previous study. Second, fundamental solutions for surplus flow problems were presented. Third, the solutions were applied to a virtual environment to present their practicality and quantitative effects. The two solutions based on the study results were as follows. First, a closed center-type directional control valve was applied to the hydraulic circuit. Second, an unloading system was set up through an on-off solenoid valve.

소형 압전유압펌프 브레이크 시스템의 성능해석 및 실험 (Performance Analysis and Test of the Small Piezoelectric-Hydraulic Pump Brake System)

  • 황용하;황재혁;응위웬 안 푹;배재성
    • 항공우주시스템공학회지
    • /
    • 제12권4호
    • /
    • pp.49-56
    • /
    • 2018
  • 본 논문에서는 소형 압전유압펌프 브레이크 시스템의 성능해석 및 실험을 수행하였다. 먼저 브레이크 시스템의 구성을 위해 브레이크 부하 구성품의 3-D 모델링을 수행하였고, 상용 프로그램인 AMESim을 이용한 모델링을 진행하였다. 브레이크 시스템 모델링에는 플로팅 타입의 캘리퍼를 부하로 활용하였다. AMESim 시뮬레이션을 통해, 부하 압력과 체크밸브 변위 및 무부하 상태에서의 유량을 계산하였으며 브레이크 부하의 추가에 따른 성능해석 및 동특성 변화를 확인하였다. 브레이크 시스템의 성능 실험을 위해 부하를 고정시키는 치구를 제작하였고, 무부하 상태에서의 유량 및 부하 압력 형성 실험을 수행하고 시뮬레이션 결과와 비교하였다. 실험 결과, 최대 부하압력은 130Hz에서 약 73bar, 최대 유량 발생은 145Hz에서 약 203cc/min로, 중소형 무인기 브레이크 시스템에 적용가능성을 확인하였다. 또한 시뮬레이션 결과와 실험결과의 오차는 부하 압력과 토출 유량에서 각각 6%, 5% 정도이며, 모델링이 브레이크 성능해석에 효과적으로 활용될 것으로 판단된다.

GDI 고압펌프의 유동특성에 관한 연구 (A Study of the Fluidic Characteristics of High-Pressure Fuel Pumps for GDI Engines)

  • 이상진;노유정;류하오;이재천;신용남;박용덕;강명권
    • 대한기계학회논문집B
    • /
    • 제39권5호
    • /
    • pp.455-461
    • /
    • 2015
  • 고압연료펌프는 GDI 엔진의 핵심 구성요소로써, 엔진출력 및 연료 효율을 향상시키기 위해서는 고압연료펌프의 유동특성을 연구하는 것이 필요하다. 본 연구에서는 유압해석툴인 AMEsim을 이용하여 고압연료펌프의 통합 모델을 생성하여 유동해석을 수행하였다. 하지만, AMEsim은 시스템 해석을 위한 1차원 모델이므로 복잡한 유동현상이 발생하는 부근에서의 해석 결과는 정확하지 않은 단점이 있으므로 본 연구에서는 전산해석프로그램인 Fluent를 이용하여 난류유동이 발생하는 체크밸브의 흡입부와 토출부에서 유량과 알짜힘을 계산하였다. 다양한 압력조건과 밸브 간극변화에 따른 CFD 해석 결과는 AMEsim모델에 대한 룩업테이블로 사용되어 AMEsim의 결과를 보완함으로써 고압연료펌프에 대한 성능 분석결과의 정확성을 향상시키는 결과를 얻을 수 있었다.

양방향 압전-유압 하이브리드 구동장치의 성능 시험 (Performance Evaluation of a Bidirectional Piezoelectric Hybrid Actuator)

  • 김소룡;하넉산;구남서;배병운;김태흔;고한서;이창섭
    • 한국군사과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.213-219
    • /
    • 2015
  • Piezoelectric-based hydraulic actuator is a hybrid device consisting of a hydraulic pump driven by piezoelectric stacks that is coupled to a conventional hydraulic cylinder via a set of fast-acting valves. Nowadays, such hybrid actuators are being researched and developed actively in many developed countries by requirement of high performance and compact flight system. In this research, a piezoelectric hybrid actuator has been designed and tested. To achieve bi-directional capabilities in the actuator, solenoid valves were used to control the direction of output fluid. The experimental testing of the actuator in uni-directional and bi-directional modes was performed to examine performance issues related to the solenoid valves. The results showed that the bi-directional performance was slightly lower than uni-directional performance due to air bubble developed in the valve system. A new design to solve the vacuum problem has been proposed to improve the performance of the hybrid actuator.

모듈레이팅 밸브 및 유압 클러치의 설계 변수가 전후진 파워시프트 변속기의 변속 품질에 미치는 영향 (Effect of Design Parameters of Modulating Valve and Hydraulic Clutch on Shift Quality of a Power Shuttle Transmission)

  • 김경욱;정병학;박영준
    • Journal of Biosystems Engineering
    • /
    • 제28권3호
    • /
    • pp.187-198
    • /
    • 2003
  • This study was conducted to investigate the effect of design parameters of modulating valve and hydraulic clutch on the shift quality of a power shuttle transmission using a computer simulation. Computer simulation models of a hydraulic control system and a power shuttle drive train were developed and verified by an experimental power train in a laboratory. The software EASY5 was used for the modeling and simulation of the power shuttle transmission. Results of the study were summarized as follows: For a good shift quality. it is required to reduce the transient torque transmitted to the output shaft of the transmission as much as possible. This may be achieved by reducing the modulating time and clutch pressure. It was found that the design parameters most significantly affecting the modulating time and clutch pressure were the spring constant and displacement of a load piston of the modulating valve, and the spring constant and damping of the clutch piston. The modulating time decreased as the spring constant increased and increased as the displacement of the load piston decreased. The transient torque decreased as the modulating time increased. However their relationships were not always linear. As the damping decreased, both the modulating pressure and time decreased, which also resulted in a decrease in the transient torque. The spring constant of the clutch piston affected the modulating time and the peak transient torque. As the spring constant of the clutch increased, the peak transient torque decreased.

카운터 밸런스 밸브를 내장한 유압 모터 브레이크 시스템의 동특성 (A Study on Dynamic Characteristics of Hydraulic Motor Brake System with Counter Balance Valve)

  • 윤소남;이일영
    • 수산해양기술연구
    • /
    • 제29권3호
    • /
    • pp.214-219
    • /
    • 1993
  • Counter balance valve is used as one part of hydraulic motor brake system. The function of this valve is to protect over-run or free falling of inertia load. But occasionally the brake system with counter balance valve makes some undesirable problems such as pressure surges or vibrations. These problems may hurt system safety and driver's conformability. Nevertheless, studies on dynamic characteristics of hydraulic system including counter balance valve are very rare, so further accumulation of research results are required. In this study, for the purpose of easy estimation about dynamic characteristics of hydraulic system including counter balance valve, precise formulation describing fluid dynamics and valve dynamics under various boundary conditions were made. The equations obtained in the preceding process include some parameters that must be got experimentally. Flow coefficients of valve and choke are the most significant ones among the parameters. So these parameters are obtained experimentally in this study, and experimental equations obtained from the experimental data were used for numerical calculation. The equations were analysed by numerical integration using Runge-Kutta method, because the equations contain various nonlinear terms. From the numerical analysis, it was verified that the dynamic response of counter balance valve and pressure variation at each elements can be estimated very easily. So the analysing method developed in this study enabled very easy estimating the relation between the performances of counter balance valve and various physical parameters related to the valve. Conclusively, it is said that the results obtained in this study can be used very usefully to develop a new type counter balance valve or to apply the valve to actual hydraulic system for various industrial equipments.

  • PDF