본 논문에서는 작성중인 기술문서에 대해 기존 문서 데이터베이스내의 원본문서들과 유사도를 비교하여 일정기준 이상의 유사성을 갖는 문장을 포함하는 원본문서들의 서지정보를 모아 참고문헌 목록을 자동으로 작성해 주며 대상 문서의 해당 문장에는 참고문헌 인용부호를 부착할 수 있도록 지원하는 시스템을 소개한다. 또한 이러한 제안 내용을 토대로 하여 웹기반 시범 서비스 모델을 설계하고 이를 온라인 서비스로 실현하기 위한 프로토타입 시스템을 개발하였다. 개발된 시스템을 활용하여 기술문서 작성자에게 작성중인 기술문서에 대해 기 발표된 원본문서내의 유사 문장을 검색하고 이에 대한 참고문헌 인용부호를 부착할 수 있도록 지원함으로써 표절 문제를 선제적으로 예방하고 나아가 참고문헌 목록 생성 및 인용부호 자동부착 지원기능을 통해 논문 저술에 편리성을 확보할 수 있을 것이라 기대한다.
높은 연관성을 갖는 문서들을 서로 집단화시키는 문서 클러스터링은 문서와 문서간의 연관성을 확인할 수 있는 문서의 주제어 추출이 중요한 문제이며 일반적인 정보검색 시스템에서 사용하는 출현빈도에 의한 주제어 추출은 성능 향상에 한계가 있다. 또한, 문서 클러스터링은 문서를 집단화시키기 위해 문서간 연관성을 확인하기 위해 유사도 계산에 따른 시간과 공간을 많이 소비하는 문제를 가지고 있다. 본 논문에서는 주제어 추출 기법을 적용하여 주제어 연관성에 의해 문서들을 집단화시키는 새로운 방법의 문서 클러스터링 알고리즘을 제안한다.
최근 DTD (Document Type Descriptor)를 포함하고 있지 않은 XML 문서의 사용이 증가하고 있다. 따라서 서로 다른 구조를 갖는 많은 양의 XML 문서를 관계형 DBMS에 저장하거나, 인덱스를 이용하여 매핑하는 등 보다 효율적으로 관리하기 위한 다양한 인덱싱 기법에 대한 연구가 진행되고 있다. 이러한 연구들 중 경로 비트맵 인덱싱 기법은 경로 구성 유사도를 기반으로 3차원 비트맵 클러스터를 생성하고, 클러스터 단위의 검색을 수행함으로서 빠른 검색 속도를 보여주었다. 그러나 이 기법은 비교하려는 두 경로 중 항상 짧은 경로가 기준 경로가 되는 한계점과, 같은 노드 구성을 가지는 두 경로에서도 노드의 위치에 따라 그 유사도가 크게 변하는 등의 여러 문제점을 가지고 있었다. 이러한 문제점을 해결하고, 정확한 클러스터링을 수행하기 위해서는 합리적인 경로 유사도 계산식이 필요하게 되었다. 본 논문에서는 기존 방법의 문제점을 해결하고, 보다 정확한 클러스터링을 수행할 수 있는 새로운 경로 유사도 계산식을 제안한다.
복잡한 시맨틱을 포함한 웹 문서를 정확히 범주화하고 이 과정을 자동화하기 위해서는 인간의 지식체계를 수용할 수 있는 표준화, 지능화, 자동화된 문서표현 및 분류기술이 필요하다. 이를 위해 키워드 빈도수, 문서내 키워드들의 관련성, 시소러스의 활용, 확률기법 적용 등에 사용자의도(intention) 정보를 활용한 범주화와 조정 프로세스를 도입하였다. 웹 문서 분류과정에서 시소러스 등을 사용하는 지식베이스 문서분류와 비 감독 학습을 하는 사전 지식체계(a priori)가 없는 유사성 문서분류 방법에 의도정보를 사용할 수 있도록 기반체계를 설계하였고 다시 이 두 방법의 차이는 Hybrid조정프로세스에서 조정하였다. 본 연구에서 설계된 HDCI(Hybrid Document Classification with Intention) 모델은 위의 웹 문서 분류과정과 이를 제어 및 보조하는 사용자 의도 분석과정으로 구성되어 있다. 의도분석과정에 키워드와 함께 제공된 사용자 의도는 도메인 지식(domain Knowledge)을 이용하여 의도간 계층트리(intention hierarchy tree)를 구성하고 이는 문서 분류시 제약(constraint) 또는 가이드의 역할로 사용자 의도 프로파일(profile) 또는 문서 특성 대표 키워드를 추출하게 된다. HDCI는 문서간 유사성에 근거한 상향식(bottom-up)의 확률적인 접근에서 통제 및 안내의 역할을 수행하고 지식베이스(시소러스) 접근 방식에서 다양성에 한계가 있는 키워들 간 관계설정의 정확도를 높인다.
판례는 일반인 또는 법률 전문가가 사건에 참조하기 위해 가장 먼저 참고할 수 있는 재판의 선례이다. 하지만 이러한 판례의 유용성에도 불구하고 현 대법원 판례 검색 시스템은 판례 검색에 용이하지 않다. 왜냐하면 법률 전문 지식이 없는 일반인은 검색 의도에 부합하는 검색 결과를 정확히 도출하는 데 어려움이 있으며, 법률 전문가는 검색에 많은 시간과 비용이 들게 되기 때문이다. 이미 해외에서는 유사 케이스 매칭 데이터셋을 구축하여 일반인과 전문가로 하여금 유사 판례 검색을 용이하게 할 뿐만 아니라 여러 자연어 처리 태스크에도 활용하고 있다. 하지만 국내에는 법률 AI와 관련하여 오직 법률과 관련한 세부 태스크 수행에 초점을 맞춘 연구가 많으며, 리소스로서의 유사 케이스 매칭 데이터셋은 구축되어 있지 않다. 이에 본 논문에서는 리소스로서의 판례 데이터셋을 위해 딥러닝 알고리즘 중 문서의 의미를 반영할 수 있는 Doc2Vec 임베딩 모델과 SBERT 임베딩 모델을 적용하여 판례 문서 간 유사도를 측정·비교하였다. 그 결과 SBERT 모델을 통해 도출된 유사 판례가 문서 간 내용적 유사성이 높게 나타났으며, 이를 통해 SBERT 모델을 이용하여 유사 판례 매칭 기초 데이터셋을 구축하였다.
논리적으로 동일한 종류에 속하여 서로 유사한 구조를 가지는 많은 XML 문서들이 서로 다른 종류로 분류되어 서로 다른 문서형 정의(DTD)를 가지게 되는 경우가 많다. 이로 인하여 XML 문서를 저장하기 위한 데이타베이스의 스키마가 서로 다르게 되고, 동일한 데이타베이스에 저장되어야 하는 XML 문서들이 서로 다른 데이타베이스에 저장되는 문제점이 발생하게 된다. 이러한 문제점을 해결하기 위하여 본 논문에서는 유한 오토마타와 트리구조를 이용하여 유사한 구조를 가지는 XML 문서들의 DTD를 통합하는 알고리즘을 제안한다. 유한 오토마타는 DTD의 반복연산자나 연결자를 표현하기에 적합하고 표현 방법이 단순하므로 DTD 통합 알고리즘의 복잡도를 감소시킬 수 있다. 또한 제안한 알고리즘의 효과성을 검증하기 위하여 국내 학회 논문지의 논문 DTD를 통합하는데 본 논문에서 제안한 알고리즘을 적용한다.
기존의 문서 클러스터링 알고리즘은 모든 문서가 각각 하나의 클러스터에만 할당되도록 설계되어 문서에 여러 개의 주제가 포함되어 있을지라도 문서는 유사도 비교에 의해 오직 하나의 플러스터에 포함된다는 단점이 있다. 본 연구에서는 이러한 문서 플러스터링 방법의 한계를 파악하기 위해 문서가 여러 개의 클러스터에 포함될 수 있는 계층적 중복 문서 클러스터링을 제안한다. 또한, 문서 클러스터링의 정확도를 높이기 위해서 불용어 제거 알고리즘을 이용해 불용어를 제거하여 클러스터링에 사용되는 키워드를 선별하고, 단어가중치 산출을 위한 TF*NHDF 공식을 제안한다.
인터넷과 컴퓨터를 이용한 학생들의 과제물을 평가하는데 있어 표절의 용이성으로 인해 정확히 판별하는 것은 매우 어렵고 번거로운 일이다. 특히 동일한 주제에 대해서 작성되는 경우가 많으므로 독자적으로 작성된 문서와 표절되어진 문서를 판별하기가 쉽지 않다. 이것은 클러스터링 하고자 하는 문서들에서 주요 단어들 즉, 색인어들의 출현 빈도를 추출한 뒤 이를 이용하여 가장 적합한 Clustering을 찾는 기존의 정보 검색 방법들과는 전혀 다른 문제이다. 본 논문에서는 과제물의 평가에 지침을 제공할 수 있도록 유사 어절 트리를 이용한 표절 유사도에 따른 Cluster들을 생성하는 방법에 대해 제안한다.
필적 감정은 개인의 고유한 필적 개성을 이용하여 임의의 두 필기 문장 또는 텍스트가 동일인에 의해 작성되었는지를 판별하는 기술로 유서대필 및 보안수사, 서명의 검증, 범죄 수사 등에 활용되어지고 있다. 이러한 작업은 감정 전문가의 판단기준에 의해 필적의 유사성을 판별하기 때문에 객관성 결여 및 과도한 소요 시간, 과도한 처리비용의 문제를 내포하게 된다. 이러한 문제를 해결하여 판별의 객관성과 업무의 신속한 처리를 가능하게 하기 본 논문에서는 컴퓨터를 통한 패턴 분석을 적용하여 두 필적의 유사성을 판별하는 방법을 본 논문에서는 제안한다. 이를 위하여 본 논문은 학습단계와 자동분석단계로 나뉘며, 학습단계에서는 입력된 문서영상에서 필적의 영역을 추출한 후, 특징을 추출하고 DTW연산을 통하여 학습을 한다. 자동분석단계에서는 대조할 문서영상에서의 특징을 추출하고 입력된 문서영상과 대조할 문서영상간의 마할라노비스 거리(Mahalanobis Distance)를 구하여 서명 및 필적에 대한 유사도를 도출한다. 실험은 4명의 필적을 이용하여 비교하였으며, 우수한 결과를 보였다.
많은 양의 뉴스가 생성됨에 따라 이를 효과적으로 정리하는 기법이 최근 활발히 연구되어왔다. 그 중 뉴스클러스터링은 두 뉴스가 동일사건을 다루는지를 판정하는 분류기의 성능에 의존적인데, 대부분의 경우 BoW(Bag-of-Words)기반 벡터유사도를 사용하고 있다. 본 논문에서는 BoW기반의 벡터유사도 뿐 아니라 두 문서에 포함된 사진들의 유사성 및 주제의 관련성을 측정, 이를 분류기의 자질로 추가하여 두 뉴스가 동일사건을 다루는지 판정하는 분류기의 성능을 개선하는 방법을 제안한다. 사진들의 유사성 및 주제의 관련성은 최근 각광을 받는 딥러닝기반 CNN과 신경망기반 문서임베딩을 통해 측정하였다. 실험결과 기존의 BoW기반 벡터유사도에 의한 분류기의 성능에 비해 제안하는 두 자질을 사용하였을 경우 3.4%의 성능 향상을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.