• Title/Summary/Keyword: 유사단어

Search Result 548, Processing Time 0.026 seconds

Classification of Web Documents Using Associative Word Frequency for Collaborative Filtering (협력적 필터링을 위해 연관 단어 빈도를 이용한 웹 문서 분류)

  • 하원식;정경용;정헌만;류중경;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.160-162
    • /
    • 2004
  • 기존의 웹 문서 분류 시스템서는 많은 시간과 노력을 요구하며, 연관 단어가 아닌 단일 단어만으로 웹 문서들을 분류하여 단어의 중의성을 반영하지 못해 많은 오분류가 있었다. 이러한 문제점을 해결하기 위해 본 논문에서는 협력적 필터링을 위한 연관 단어 빈도를 사용한 웹 문서 분류 방법을 제안한다. 제안된 방법에서는 웹 문서 내에서 단어들을 추출하고 빈도 가중치를 계산한다. 추출된 단어를 Apriori 알고리즘에 의해 연관 규칙을 생성하고 신뢰도에 단어 빈도 가중치를 반영한다. 수정된 신뢰도를 ARHP 알고리즘에 적용하여 연관 단어들 사이의 유사정도를 계산하고 유사 클래스를 구성한다 생성된 유사 클래스들을 기반으로 웹 문서를 $\alpha$-cut을 이용하여 분류한다 성능평가를 위해 기존의 문서 분류 방법들과 비교 평가를 하였다.

  • PDF

The segmentation of Korean word for the lip-synch application (Lip-synch application을 위한 한국어 단어의 음소분할)

  • 강용성;고한석
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.509-512
    • /
    • 2001
  • 본 논문은 한국어 음성에 대한 한국어 단어의 음소단위 분할을 목적으로 하였다. 대상 단어는 원광대학교 phonetic balanced 452단어 데이터 베이스를 사용하였고 분할 단위는 음성 전문가에 의해 구성된 44개의 음소셋을 사용하였다. 음소를 분할하기 위해 음성을 각각 프레임으로 나눈 후 각 프레임간의 스펙트럼 성분의 유사도를 측정한 후 측정한 유사도를 기준으로 음소의 분할점을 찾았다. 두 프레임 간의 유사도를 결정하기 위해 두 벡터 상호간의 유사성을 결정하는 방법중의 하나인 Lukasiewicz implication을 사용하였다. 본 실험에서는 기존의 프레임간 스펙트럼 성분의 유사도 측정을 이용한 하나의 어절의 유/무성음 분할 방법을 본 실험의 목적인 한국어 단어의 음소 분할 실험에 맞도록 수정하였다. 성능평가를 위해 음성 전문가에 의해 손으로 분할된 데이터와 본 실험을 통해 얻은 데이터와의 비교를 하여 평가를 하였다. 실험결과 전문가가 직접 손으로 분할한 데이터와 비교하여 32ms이내로 분할된 비율이 최고 84.76%를 나타내었다.

  • PDF

Measurement of Document Similarity using Term/Term-pair Features and Neural Network (단어/단어쌍 특징과 신경망을 이용한 두 문서간 유사도 측정)

  • Kim Hye Sook;Park Sang Cheol;Kim Soo Hyung
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1660-1671
    • /
    • 2004
  • This paper proposes a method for measuring document similarity between two documents. One of the most significant ideas of the method is to estimate the degree of similarity between two documents based on the frequencies of terms and term-pair, existing in both the two documents. In contrast to conventional methods which takes only one feature into account, the proposed method considers several features at the same time and meatures the similarity using a neural network. To prove the superiority of our method, two experiments have been conducted. One is to verify whether the two input documents are from the same document or not. The other is a problem of information retrieval with a document as the query against a large number of documents. In both the two experiments, the proposed method shows higher accuracy than two conventional methods, Cosine similarity measurement and a term-pair method.

Integrated Clustering Method based on Syntactic Structure and Word Similarity for Statistical Machine Translation (문장구조 유사도와 단어 유사도를 이용한 클러스터링 기반의 통계기계번역)

  • Kim, Hankyong;Na, Hwi-Dong;Li, Jin-Ji;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.44-49
    • /
    • 2009
  • 통계기계번역에서 도메인에 특화된 번역을 시도하여 성능향상을 얻는 방법이 있다. 이를 위하여 문장의 유형이나 장르에 따라 클러스터링을 수행한다. 그러나 기존의 연구 중 문장의 유형 정보와 장르에 따른 정보를 동시에 사용한 경우는 없었다. 본 논문에서는 문장 사이의 문법적 구조 유사성으로 문장을 유형별로 분류하는 새로운 기법을 제시하였고, 단어 유사도 정보로 문서의 장르를 구분하여 기존의 두 기법을 통합하였다. 이렇게 분류된 말뭉치에서 추출한 모델과 전체 말뭉치에서 추출된 모델에서 보간법(interpolation)을 사용하여 통계기계번역의 성능을 향상하였다. 문장구조의 유사성과 단어 유사도 계산을 위하여 각각 커널과 코사인 유사도를 적용하였으며, 두 유사도를 적용하여 말뭉치를 분류하는 과정은 K-Means 알고리즘과 유사한 기계학습 기법을 사용하였다. 이를 일본어-영어의 특허문서에서 실험한 결과 최선의 경우 약 2.5%의 상대적인 성능 향상을 얻었다.

  • PDF

Korean Language Clustering using Word2Vec (Word2Vec를 이용한 한국어 단어 군집화 기법)

  • Heu, Jee-Uk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.25-30
    • /
    • 2018
  • Recently with the development of Internet technology, a lot of research area such as retrieval and extracting data have getting important for providing the information efficiently and quickly. Especially, the technique of analyzing and finding the semantic similar words for given korean word such as compound words or generated newly is necessary because it is not easy to catch the meaning or semantic about them. To handle of this problem, word clustering is one of the technique which is grouping the similar words of given word. In this paper, we proposed the korean language clustering technique that clusters the similar words by embedding the words using Word2Vec from the given documents.

Implementation of A Plagiarism Detecting System with Sentence and Syntactic Word Similarities (문장 및 어절 유사도를 이용한 표절 탐지 시스템 구현)

  • Maeng, Joosoo;Park, Ji Su;Shon, Jin Gon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.3
    • /
    • pp.109-114
    • /
    • 2019
  • The similarity detecting method that is basically used in most plagiarism detecting systems is to use the frequency of shared words based on morphological analysis. However, this method has limitations on detecting accurate degree of similarity, especially when similar words concerning the same topics are used, sentences are partially separately excerpted, or postpositions and endings of words are similar. In order to overcome this problem, we have designed and implemented a plagiarism detecting system that provides more reliable similarity information by measuring sentence similarity and syntactic word similarity in addition to the conventional word similarity. We have carried out a comparison of on our system with a conventional system using only word similarity. The comparative experiment has shown that our system can detect plagiarized document that the conventional system can detect or cannot.

Analysis of Vocabulary Relations by Dimensional Reduction for Word Vectors Visualization (차원감소 단어벡터 시각화를 통한 어휘별 관계 분석)

  • Ko, Kwang-Ho;Paik, Juryon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.13-16
    • /
    • 2022
  • LSTM과 같은 딥러닝 기법을 이용해 언어모델을 얻는 과정에서 일종의 부산물로 학습 대상인 말뭉치를 구성하는 어휘의 단어벡터를 얻을 수 있다. 단어벡터의 차원을 2차원으로 감소시킨 후 이를 평면에 도시하면 대상 문장/문서의 핵심 어휘 사이의 상대적인 거리와 각도 등을 직관적으로 확인할 수 있다. 본 연구에서는 기형도의 시(詩)을 중심으로 특정 작품을 선정한 후 시를 구성하는 핵심 어휘들의 차원 감소된 단어벡터를 2D 평면에 도시하여, 단어벡터를 얻기 위한 텍스트 전처리 방식에 따라 그 거리/각도가 달라지는 양상을 분석해 보았다. 어휘 사이의 거리에 의해 군집/분류의 결과가 달라질 수 있고, 각도에 의해 유사도/유추 연산의 결과가 달라질 수 있으므로, 평면상에서 핵심 어휘들의 상대적인 거리/각도의 직관적 확인을 통해 군집/분류작업과 유사도 추천/유추 등의 작업 결과의 양상 변화를 확인할 수 있었다. 이상의 결과를 통해, 영화 추천/리뷰나 문학작품과 같이 단어 하나하나의 배치에 따라 그 분위기와 정동이 달라지는 분야의 경우 텍스트 전처리에 따른 거리/각도 변화를 미리 직관적으로 확인한다면 분류/유사도 추천과 같은 작업을 좀 더 정밀하게 수행할 수 있을 것으로 판단된다.

  • PDF

Research on Comparing System with Syntactic-Semantic Tree in Subjective-type Grading (주관식 문제 채점에서의 구문의미트리 비교 시스템에 대한 연구)

  • Kang, WonSeog
    • The Journal of Korean Association of Computer Education
    • /
    • v.20 no.5
    • /
    • pp.79-88
    • /
    • 2017
  • To upgrade the subjective question grading, we need the syntactic-semantic analysis to analyze syntatic-semantic relation between words in answering. However, since the syntactic-semantic tree has structural and semantic relation between words, we can not apply the method calculating the similarity between vectors. This paper suggests the comparing system with syntactic-semantic tree which has structural and semantic relation between words. In this thesis, we suggest similarity calculation principles for comparing the trees and verify the principles through experiments. This system will help the subjective question grading by comparing the trees and be utilized in distinguishing similar documents.

Word Representation Analysis of Bio-marker and Disease Word (바이오 마커와 질병 용어의 단어 표현 분석)

  • Youn, Young-Shin;Nam, Kyung-Min;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.165-168
    • /
    • 2015
  • 기계학습 기반의 자연어처리 모듈에서 중요한 단계 중 하나는 모듈의 입력으로 단어를 표현하는 것이다. 벡터의 사이즈가 크고, 단어 간의 유사성의 개념이 존재하지 않는 One-hot 형태와 대조적으로 유사성을 표현하기 위해서 단어를 벡터로 표현하는 단어 표현 (word representation/embedding) 생성 작업은 자연어 처리 작업의 기계학습 모델의 성능을 개선하고, 몇몇 자연어 처리 분야의 모델에서 성능 향상을 보여 주어 많은 관심을 받고 있다. 본 논문에서는 Word2Vec, CCA, 그리고 GloVe를 사용하여 106,552개의 PubMed의 바이오메디컬 논문의 요약으로 구축된 말뭉치 카테고리의 각 단어 표현 모델의 카테고리 분류 능력을 확인한다. 세부적으로 나눈 카테고리에는 질병의 이름, 질병 증상, 그리고 난소암 마커가 있다. 분류 능력을 확인하기 위해 t-SNE를 이용하여 2차원으로 단어 표현 결과를 맵핑하여 가시화 한다.

  • PDF

Discovering Semantic Relationships between Words by using Wikipedia (위키피디아에 기반한 단어 사이의 의미적 연결 관계 탐색)

  • Kim, Ju-Hwang;Hong, Min-sung;Lee, O-Joun;Jung, Jason J.
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.17-18
    • /
    • 2015
  • 본 논문에서는 위키피디아를 이용하여 단어 사이의 유사도와 내포된 연결 단어들에 대한 탐색 기법을 제안 한다. 위키피디아에서 제공하는 API를 이용하여 두 단어 사이를 탐색함으로써, 기존 단어 사이의 유사도를 계산하는 방식보다 더 간단하고 폭 넓은 의미 집단을 포괄할 수 있다. 이는 그래프적 특성에 기반하며 그래프를 구성하는 방식으로써 동적 방식과 정적 방식으로 구성된다.

  • PDF