• Title/Summary/Keyword: 유비추론의 원리

Search Result 2, Processing Time 0.014 seconds

The conditions and principles of the 'Bionik' space design on the basis of the consilient horizon of biology and architecture (생물학과 건축의 통섭적 지평에 기초한 비오닉 공간디자인의 조건 및 원리)

  • Lee, Ran-Pyo
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.5
    • /
    • pp.68-77
    • /
    • 2011
  • In this research it is concentrated first of all on the attempts to reconstruct the historical context of the idea for the space design based on the natural construction and to re-appropriate il critically to the present context. Sequentially in the areas of philosophy, biology, neuroscience, and architecture it has been variously discussed on the problems about the synthesis of biology and techniques. In the context of the consilience of biology and technique Werner Nachtigall, who has intended to shed light on the morphological principles in the natural construction, founded the 'Bionik', which is different from the bionics or the biomechanics that are oriented to the imitation of natural forms. The space design that is on the basis of the Bionik treats organisms as a functional whole. Therefore the Bionik space design follows two kinds of principle such as the principle of analogy and the principle of optimization. After all the understanding of the consilience of nature and technique for Nachtigall and Bionik designers tends toward the explication of the complex process in which the human perceptions, the environment, and the phenomenal techniques are united together, and this complex process is associated with the space design based on the Bionik.

Mathematical Reasoning Ability and Error Comparison through the Descriptive Evaluation of Mathematically Gifted Elementary Students and Non-Gifted Students (초등수학영재와 일반학생의 서술형 평가를 통한 수학적 추론 능력 및 오류 비교)

  • Kim, Dong Gwan;Ryu, Sung Rim
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.1
    • /
    • pp.123-148
    • /
    • 2014
  • The purpose of this study is to figure out the perceptional characteristics of mathematically gifted elementary students by comparing the mathematical reasoning ability and errors between mathematically gifted elementary students and non-gifted students. This research has been targeted at 63 gifted students from 5 elementary schools and 63 non-gifted students from 4 elementary schools. The result of this research is as follows. First, mathematically gifted elementary students have higher inductive reasoning ability compared to non-gifted students. Mathematically gifted elementary students collected proper, accurate, systematic data. Second, mathematically gifted elementary students have higher inductive analogical ability compared to non-gifted students. Mathematically gifted elementary students figure out structural similarity and background better than non-gifted students. Third, mathematically gifted elementary students have higher deductive reasoning ability compared to non-gifted students. Zero error ratio was significantly low for both mathematically gifted elementary students and non-gifted students in deductive reasoning, however, mathematically gifted elementary students presented more general and appropriate data compared to non-gifted students and less reasoning step was achieved. Also, thinking process was well delivered compared to non-gifted students. Fourth, mathematically gifted elementary students committed fewer errors in comparison with non-gifted students. Both mathematically gifted elementary students and non-gifted students made the most mistakes in solving process, however, the number of the errors was less in mathematically gifted elementary students.

  • PDF