• Title/Summary/Keyword: 유변성질

Search Result 129, Processing Time 0.02 seconds

도공층의 공극 구조와 인쇄후 잉크의 잔류 거동에 관한 연구(II)

  • ;;Douglas W. Bousfield
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.11a
    • /
    • pp.127-127
    • /
    • 2001
  • 종이의 공극은 도공용 원지 또는 인쇄 용지로 사용될 때 도공액과 잉크 조성분의 침 투 거동에 영향을 미침으로써 여러 가지 물리적 성질에 변화를 가져온다. 도공 공정의 경우, 도공액에 포함되어 있는 물과 수용성 고분자 물질의 원지 침투는 도공 작업성과 도공층의 구조에 변화를 가져 올 수 있다. 이러한 변화는 물을 포함한 수용성 물질의 원지 침투가 빨라질 때 도공액의 고형화점 상승에 의한 원지 피복력 저하에 따른 도공 지의 평활성 감소를 가져온다. 또한 높은 전단력이 가해지는 블레이드 도공에서는 도피 직전 도공액의 수분 이탈이 급격하게 일어날 경우 블레이드에서 도공액의 유동성 저하 가 발생됨으로써 여러가지 문제점을 나타낸다고 보고 된 바 있다. 인쇄 공정의 경우에 는 도공층이 잉크의 직접적인 기질(substrate)로 작용되어 잉크 성분의 잔류 및 침투 거동에 영향을 미친다. 즉 지나치게’발달된공극 특성을 지닌 도공층에서는 잉크 안료가 적절한 결합력을 가지고 도공층에 정착되기 전에 잉크 속의 레진과 용제가 도공층의 공극으로 소실됨으로써 인쇄 완료 후 작은 외력에도 잉크 층이 파괴되는 효킹 ( (chalking) 현상이 일어난다. 그러나 과도한 바인더의 적용과 미세한 안료의 사용에 따 라 도공층의 공극이 폐쇄될 경우에는 인쇄 후 잉크의 건조가 늦어져 인쇄 작업성의 저 해 요인으로써 작용한다. 종이의 공극성과 인쇄적성은 주지하는 바와 같이 불가분의 관계에 있으며, 본 연구에 서는 피인쇄체로서 공극성을 달리한 세 종류의 도공지를 제조하고 실험실적으로 제조 된 잉크를 사용하여 각각의 특성에 따른 잉크의 잔류 특성에 대하여 고찰해 보고자 하 였다. 특히 인쇄 전 피인쇄체의 공극 특성에 따른 인쇄 전후의 공극율 변화와 주요 인 쇄 적성간의 관계에 대해 초점을 맞추었다.시아노에틸화한 PYA용액의 점탄성 평가를 위하여 storage modulus와 loss modulus 를 분석하였다. 일반적 유변특성 평가 결과 PYA용액은 shear-thinning, pseudoplastic 한 특성을 나타내어 표면사이즈 공정에서의 적용 가능성을 확인할 수 있었다. 사용하는 통계기법 중의 하나인 주성분회귀분석을 실시하였다. 주성분 분석은 여러 개의 반응변수에 대하여 얻어진 다변량 자료의 다차원적인 변 수들을 축소, 요약하는 차원의 단순화와 더불어 서로 상관되어있는 반응변수들 상호간 의 복잡한 구조를 분석하는 기법이다. 본 발표에서는 공정 자료를 활용하여 인공신경망 과 주성분분석을 통해 공정 트러블의 발생에 영향 하는 인자들을 보다 현실적으로 추 정하고, 그 대책을 모색함으로써 이를 최소화할 수 있는 방안을 소개하고자 한다.금 빛 용사 둥과 같은 표면처리를 할 경우임의 소재 표면에 도금 및 용 사에 용이한 재료를 오버레이용접시킨 후 표면처리를 함으로써 보다 고품질의 표면층을 얻기위한 시도가 이루어지고 있다. 따라서 국내, 외의 오버레이 용접기술의 적용현황 및 대표적인 적용사례, 오버레이 용접기술 및 용접재료의 개발현황 둥을 중심으로 살펴봄으로서 아직 국내에서는 널리 알려지지 않은 본 기 술의 활용을 넓이고자 한다. within minimum time from beginning of the shutdown.및 12.36%, $101{\sim}200$일의 경우 12.78% 및 12.44%, 201일 이상의 경우 13.17% 및 11.30%로 201일 이상의 유기의 경우에만 대조구와 삭제 구간에 유의적인(p<0.05) 차이를 나타내었다.는 담수(淡水)에서 10%o의 해수(海水)로 이주된지 14일(日) 이후에 신장(腎臟)에서 수축된 것으로

  • PDF

Determination of Rheological Properties of Surimi Gels and Imitation Crab-leg Products by Stress-Relaxation Test (시판 어묵 및 게맛살의 변형력완화 실험을 통한 유변학적 특성)

  • Choi, Won-Seok;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1085-1091
    • /
    • 1998
  • The purpose of this study was to investigate the rheological properties of surimi gels and imitation crab-leg products by stress-relaxation test and to examine the correlations between stress-relaxation parameters and T.P.A. parameters. The linear viscoelasticity of surimi gels and imitation crab-leg products was observed in the range of the strain of $5{\sim}20%$ at cross-head speed 2.4 mm/sec. The average tensile forces of surimi gels and imitation crab-leg products were similar, 370.4 g and 436.4 g, respectively, but surimi gels showed higher relaxation time and viscous component (17256.1 sec, $1.357{\times}10^{10}$ poise) than those of imitation crab-leg products (6110 sec, $0.519^{\ast}10^{10}$ poise). Estimated tensile force of each exponential term in relaxation test was highly related with hardness, gumminess and chewiness of T.P.A (r=0.93, 0.93, 0.95, p<0.01), the relaxation time of each exponential term was rrelated with cohesiveness (r=0.89, p<0.01) of T.P,A. and the elastic component of exponential term with gumminess, chewiness and hardness (r=0.92, 0.94, 0.93. p<0.01) of T.P.A.. The viscous component of exponential term was related with cohesiveness (r=0.83, p<0.05) of T.P.A.. The degree of texturization was negatively related with the relaxation time and viscous component (r=-0.92, -0.96, p<0.01).

  • PDF

SLUMPING RESISTANCE AND VISCOELASTICITY OF RESIN COMPOSITE PASTES (치과용 복합레진의 중합 전 slumping resistance와 점탄성)

  • Suh, Hee-Yeon;Lee, In-Bog
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.235-245
    • /
    • 2008
  • The aim of this study was to develop a method for measuring the slumping resistance of resin composites and to relate it to the rheological characteristics. Five commercial hybrid composites (Z100. Z250. DenFil, Tetric Ceram. ClearFil) and a nanofill composite (Z350) were used to make disc-shaped specimens of 2 mm thickness. An aluminum mold with square shaped cutting surface was pressed onto the composite discs to make standardized imprints. The imprints were light-cured either immediately (non-slumped) or after waiting for 3 minutes at $25^{\circ}C$ (slumped). White stone replicas were made and then scanned for topography using a laser 3-D profilometer. Slumping resistance index (SRI) was defined as the ratio of the groove depth of the slumped specimen to that of the non-slumped specimen. The pre-cure viscoelasticity of each composite was evaluated by an oscillatory shear test and normal stress was measured by a squeeze test using a rheometer. Flow test was also performed using a flow tester. Correlation analysis was performed to investigate the relationship between the viscoelastic properties and the SRI. SRI varied between the six materials (Z100 < DenFil < Z250 < ClearFil < Tetric Ceram < Z350). The SRI was strongly correlated with the viscous (loss) shear modulus G' but not with the loss tangent. Also. slumping resistance was more closely related to the resistance to shear flow than to the normal stress. Slumping tendency could be quantified using the imprint method and SRI. The index may be applicable to evaluate the clinical handling characteristics of composites.

  • PDF

Rheological Characteristics and Molecular Weight of Ammonium-Sulfate Fractions of Tara Gum (염석법에 의한 타라검 분획들의 분자량 및 리올로지 특성)

  • Kim, Kyeong-Yee
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.293-298
    • /
    • 2015
  • This study aimed at characterizing the rheological properties and molecular weight of tara gum fractionated with ammonium sulfate. Tara gum was separated into six fractions (F1-F6) at different concentrations of ammonium sulfate, ranging from 12.21 to 28.67% (w/w). The yield of the tara gum fractions ranged between 4.98 and 17.47%, and their intrinsic viscosity ranged from 9.38 to 12.44 dL/g. The highest values of Huggins coefficient (k') and viscosity-molecular mass were observed in fraction F3. The shear viscosity of the tara gum fractions was measured by a cone-plate viscometer, clearly showing shear thinning behavior. Size-exclusion chromatography results showed that the molecular weight ranged between 635.42 and 776.71 kg/mol, and the F3 fraction exhibited higher values of molecular weight.

Synthesis of Functional Copolyester, its Blend with PET, and Properties of Carbon Black Dry Color (기능성 폴리에스테르 공중합체의 합성, PET와의 블렌드 및 카본 블랙 Dry Color의 물성)

  • Park, Lee Soon;Lee, Dong Chan;Kim, Jin Kon;Huh, Wan Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.496-503
    • /
    • 1996
  • Aromatic and aliphatic copolyesters for the dispersing agent were synthesized by two stage reaction, esterification and polycondensation. Copolyesters were blended with PET in the melt state and their thermal and rheological properties were investigated. From GPC analysis Mn's and Mw's of copolyesters were about 30000 and 65000g/mol, respectively. From DSC experiment copolyesters had melting range of $90{\sim}150^{\circ}C$. Copolymer composition was in good agreement with comonomer feed ratio from $^1H$-NMR analysis. Copolyesters and SPA (standard sample) were blended with PET in the melt state. From DSC experiment, copolyesters and SPA were miscible with PET. From the dynamic melt viscosity experiment, melt viscosity of blended sample was increased as the content of aromatic copolyester was increased, while it was decreased as the content of aliphatic and SPA were increased. As for volume resistivity of dry color containing carbon black and copolyesters with dispersing time, aromatic copolyester showed highest value. It was conferred from this result that aromatic copolyester was the best dispersing agent for carbon black in PET resin.

  • PDF

SLUMPING RESISTANCE AND VISCOELASTICITY OF RESIN COMPOSITE PASTES (치과용 복합레진의 중합 전 slumping resistance와 점탄성)

  • Suh, Hee-Yeon;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.235-245
    • /
    • 2008
  • The aim of this study was to develop a method for measuring the slumping resistance of resin composites and to relate it to the rheological characteristics. Five commercial hybrid composites (Z100, Z250, DenFil, Tetric Ceram, ClearFil) and a nanofill composite (Z350) were used to make disc-shaped specimens of 2 mm thickness. An aluminum mold with square shaped cutting surface was pressed onto the composite discs to make standardized imprints. The imprints were light-cured either immediately (non-slumped) or after waiting for 3 minutes at $25{\circ}C$ (slumped). White stone replicas were made and then scanned for topography using a laser 3-D profilometer. Slumping resistance index (SRI) was defined as the ratio of the groove depth of the slumped specimen to that of the nonslumped specimen. The pre-cure viscoelasticity of each composite was evaluated by an oscillatory shear test and normal stress was measured by a squeeze test using a rheometer. Flow test was also performed using a flow tester. Correlation analysis was performed to investigate the relationship between the viscoelastic properties and the SRI. SRI varied between the six materials (Z100 < DenFil < Z250 < ClearFil < Tetric Ceram < Z350). The SRI was strongly correlated with the viscous (loss) shear modulus G' but not with the loss tangent. Also, slumping resistance was more closely related to the resistance to shear flow than to the normal stress. Slumping tendency could be quantified using the imprint method and SRI. The index may be applicable to evaluate the clinical handling characteristics of composites.

RHEOLOGICAL CHARACTERIZATION OF COMPOSITES USING A VERTICAL OSCILLATION RHEOMETER (수직 진동형 Rheometer를 이용한 복합레진의 유변학적 성질의 측정)

  • Lee, In-Bog;Cho, Byung-Hoon;Son, Ho-Hyun;Lee, Sang-Tag;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.489-497
    • /
    • 2004
  • Objective: The purpose of this study was to investigate the viscoelastic properties related to handling characteristics of composite resins, Methods: A custom designed vertical oscillation rheometer (VOR) was used for rheological measurements of composites. The VOR consists of three parts: (1) a measuring unit, (2) a deformation induction unit and (3) a force detecting unit, Two medium viscous composites, Z100 and Z250 and two packable composites, P60 and SureFil were tested. The viscoelastic material function, including complex modulus $E^{*}$ and phase angle ${\delta}$, were measured. A dynamic oscillatory test was used to evaluate the storage modulus (E'), loss modulus (E") and loss tangent ($tan{\delta}$) of the composites as a function of frequency ($\omega$) from 0.1 to 20 Hz at $23^{\circ}C$. Results: The E' and E" increased with increasing frequency and showed differences in magnitude between brands. The $E^{*}s$ of composites at ${\omega}{\;}={\;}2{\;}Hz$, normalized to that of Z100, were 2.16 (Z250), 4,80 (P60) and 25.21 (SureFil). The magnitudes and patterns of the change of $tan{\delta}$ of composites with increasing frequency were significantly different between brands. The relationships between the complex modulus $E^{*}$, the phase angle ${\delta}$ and the frequency \omega were represented by frequency domain phasor form, $E^{*}{\;}(\omega){\;}={\;}E^{*}e^{i{\delta}}{\;}={\;}E^{*}{\angle}{\delta}$. Conclusions: The viscoelasticity of composites that influences handling characteristics is significant different between brands, The VOR is a relatively simple device for dynamic, mechanical analysis of high viscous dental composites. The locus of frequency domain phasor plots in a complex plane is a valuable method of representing the viscoelastic properties of composites.

Steady Shear Flow and Dynamic Viscoelastic Properties of Semi-Solid Food Materials (반고형 식품류의 정상유동특성 및 동적 점탄성)

  • 송기원;장갑식
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.143-152
    • /
    • 1999
  • Using a Rheometrics Fluids Spectrometer(RFS II), the steady shear flow and the small-amplitude dynamic viscoelastic properties of three kinds of semi-solid food materials(mayonnaise, tomato ketchup, and wasabi) have been measured over a wide range of shear rates and angular frequencies. The shear rate dependence of steady flow behavior and the angular frequency dependence of dynamic viscoelastic behavior were reported from the experimentally measured data. In addition, some viscoplastic flow models with a yield stress term were employed to make a quantitative evaluation of the steady flow behavior, and the applicability of these models was also examined in detail. Furthermore, the correlations between steady shear flow(nonlinear behavior) and dynamic viscoelastic(linear behavior)properties were discussed using the modified power-law flow equations. Main results obtained from this study can be summarized as follows : (1) Semi-solid food materials are regarded as viscoplastic fluids having a finite magnitude of yield stress, and their flow behavior shows shear-thinning characteristics, exhibiting a decrease in steady flow viscosity with increasing shear rate. (2) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable to describe the steady flow behavior of semi-solid food materials. Among these models, the Heinz-Casson model has the best validity. (3) Semi-solid food materials show a stronger shear-thinning behavior at shear rate region higher than a critical shear rate where a more progressive structure breakdown takes place. (4) Both the storage and loss moduli are increased with increasing angular frequency, but they have a slight dependence on angular frequency. The elastic behavior is dominant to the viscous behavior over a wide range of angular frequencies. (5) All of the steady flow, dynamic, and complex viscosities are well satisfied with the power-law model behavior. The relationships between steady shear flow and dynamic viscoelastic properties can well be described by the modified forms of the power-law flow equations.

  • PDF

Morphological Properties of Binary Blends of Polyolefins Synthesized by Metallocene and Ziegler-Natta Catalysts (Ziegler-Natta와 메탈로센 촉매로 합성된 폴리올레핀 2원 블렌드의 상 형태학)

  • Kwag, Hanjin;Kim, Hak Lim;Choe, Soonja
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.944-948
    • /
    • 1999
  • The morphological properties of four binary blends of polyethylene synthesized by metallocene catalyst(MCPE) and four polyolefins prepared by Ziegler-Natta catalyst have been investigated to interpret the effect of micro-molecular structure on the phase morphology and interfacial behavior; four binary blend systems studied are high density polyethylene(HDPE)-metallocene polyethylene (MCPE), polypropylene(PP)-MCPE, poly(propylene-co-ethylene) (CoPP)-MCPE, and poly(propylene-co-ethylene-co-1-butylene) (TerPP)-MCPE, and they are all phase separated. The HDPE-MCPE blend shows evenly growing homogeneous HDPE domain on the continuous MCPE phase, on the other hand, the rest of three blends show complex heterogeneous phase behavior. The PP-MCPE blend shows that PP and MCPE and completely phase separated and phase inversion takes place at 50% MCPE. The CoPP-MCPE and TerPP-MCPE show enhanced interface due to the same micro-molecular structure of ethylene, and phase inversion takes place at 40% MCPE. In particular, TerPP-MCPE blend shows improved phase morphology between interfaces, and this may be arisen from the comonomer contents in TerPP, which are 1-butene and ethylene having the same chemical structure as that of MCPE. The enhancement of the phase morphology in the TerPP-MCPE blend is correlated with the mechanical and morphological properties. Thus, although the four blend systems are phase separated, the phase morphology suggests that the order of interfacial adhesion strength be HDPE-MCPE > TerPP-MCPE > CoPP-MCPE > PP-MCPE and that micro-molecular structure between constituents be one of major factors giving enhanced interfacial adhesion.

  • PDF